Global Uniform in N Estimates for Solutions of a System of Hartree–Fock–Bogoliubov Type in the Case $\beta <1$

J. Chong , X. Dong , M. Grillakis , M. Machedon , Z. Zhao

Peking Mathematical Journal ›› : 1 -54.

PDF
Peking Mathematical Journal ›› : 1 -54. DOI: 10.1007/s42543-024-00089-5
Original Article

Global Uniform in N Estimates for Solutions of a System of Hartree–Fock–Bogoliubov Type in the Case $\beta <1$

Author information +
History +
PDF

Abstract

We extend the results of [Commun. Partial. Differ. Equ. 44(12), 1431–1465 (2019)] by the third and fourth author globally in time. More precisely, we prove uniform-in-N Strichartz estimates for the solutions $\phi $, $\Lambda $ and $\Gamma $ of a coupled system of Hartree–Fock–Bogoliubov type with interaction potential $V_N(x-y)=N^{3 \beta }v(N^{\beta }(x-y))$ for $\beta <1$. The potential v satisfies some technical conditions, but is not small. The initial conditions have finite energy and the “pair correlation” part satisfies a smallness condition, but are otherwise general functions in suitable Sobolev spaces, and the expected correlations in $\Lambda $ develop dynamically in time. The estimates are expected to improve the Fock space bounds of [Ann. Henri Poincaré 23(2), 615–673 (2021)] by the first and fifth author. This will be addressed in a subsequent paper.

Keywords

The Hartree–Fock–Bogoliubov System / Mean-field equations

Cite this article

Download citation ▾
J. Chong, X. Dong, M. Grillakis, M. Machedon, Z. Zhao. Global Uniform in N Estimates for Solutions of a System of Hartree–Fock–Bogoliubov Type in the Case $\beta <1$. Peking Mathematical Journal 1-54 DOI:10.1007/s42543-024-00089-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bach V, Breteaux S, Chen T, Fröhlich J, Sigal IM. The time-dependent Hartree–Fock–Bogoliubov equations for bosons. J. Evol. Equ., 2022, 22(2): Paper No. 46

[2]

Benedikter N, Sok J, Solovej JP. The Dirac–Frenkel principle for reduced density matrices, and the Bogoliubov–de Gennes equations. Ann. Henri Poincaré, 2018, 19(4): 1167-1214

[3]

Boccato C, Cenatiempo S, Schlein B. Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. Henri Poincaré, 2017, 18(1): 113-191

[4]

Bourgain J. Scattering in the energy space and below for 3D NLS. J. d’Analyse Mathématique, 1998, 75: 267-297

[5]

Chen L, Lee JO. Rate of convergence in nonlinear Hartree dynamics with factorized initial data. J. Math. Phys., 2011, 52(5): 052108

[6]

Chen T, Hong Y, Pavlović N. Global well-posedness of the NLS system for infinitely many fermions. Arch. Ration. Mech. Anal., 2017, 224(1): 91-123

[7]

Chen T, Pavlović N. The quintic NLS as the mean field limit of a boson gas with three-body interactions. J. Funct. Anal., 2011, 260(4): 959-997

[8]

Chen X. Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions. Arch. Ration. Mech. Anal., 2012, 203(2): 455-497

[9]

Chen X, Holmer J. Correlation structures, many-body scattering processes, and the derivation of the Gross–Pitaevskii hierarchy. Int. Math. Res. Not., 2016, 2016(10): 3051-3110

[10]

Chen X, Holmer J. On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction. J. Eur. Math. Soc., 2016, 18(6): 1161-1200

[11]

Chen X, Holmer J. Quantitative derivation and scattering of the 3D cubic NLS in the energy space. Ann. PDE, 2022, 8(2): Paper No. 11

[12]

Chong JJ. Dynamics of large boson systems with attractive interaction and a derivation of the cubic focusing NLS equation in $\mathbb{R} ^3$. J. Math. Phys., 2021, 62(4): 042106

[13]

Chong, J.J., Dong, X., Grillakis, M., Machedon, M., Zhao, Z.: Global uniform in $N$ estimates for solutions of a system of Hartree–Fock–Bogoliubov type in the case $\beta < 1$. arXiv:2203.05447 (2022)

[14]

Chong JJ , Grillakis M, Machedon M, Zhao Z. Global estimates for the Hartree–Fock–Bogoliubov equations. Comm. Partial Differ. Equ., 2021, 46(10): 2015-2055

[15]

Chong JJ, Zhao Z. Dynamical Hartree–Fock–Bogoliubov approximation of interacting bosons. Ann. Henri Poincaré, 2021, 23(2): 615-673

[16]

Christ FM, Weinstein MI. Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal., 1991, 100(1): 87-109

[17]

Du X, Machedon M. Counterexamples to $L^p$ collapsing estimates. Ill. J. Math., 2021, 65(1): 191-200

[18]

Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)

[19]

Frank RL, Lewin M, Lieb EH, Seiringer R. Strichartz inequality for orthonormal functions. J. Eur. Math. Soc., 2014, 16(7): 1507-1526

[20]

Frank RL, Sabin J. Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Am. J. Math., 2017, 139(6): 1649-1691

[21]

Grillakis M, Machedon M. Beyond mean field: on the role of pair excitations in the evolution of condensates. J. Fixed Point Theory Appl., 2013, 14(1): 91-111

[22]

Grillakis M, Machedon M. Pair excitations and the mean field approximation of interacting bosons, I. Commun. Math. Phys., 2013, 324(2): 601-636

[23]

Grillakis M, Machedon M. Pair excitations and the mean field approximation of interacting bosons, II. Comm. Partial Differ. Equ., 2017, 42(1): 24-67

[24]

Grillakis M, Machedon M. Uniform in $N$ estimates for a Bosonic system of Hartree–Fock–Bogoliubov type. Comm. Partial Differ. Equ., 2019, 44(12): 1431-1465

[25]

Grillakis M , Machedon M, Margetis D. Second-order corrections to mean field evolution of weakly interacting bosons, II. Adv. Math., 2011, 228(3): 1788-1815

[26]

Grillakis M, Machedon M, Margetis D. Evolution of the boson gas at zero temperature: Mean-field limit and second-order correction. Q. Appl. Math., 2017, 75(1): 69-104

[27]

Grillakis M, Margetis D. A priori estimates for many-body Hamiltonian evolution of interacting boson system. J. Hyperbolic Differ. Equ., 2008, 5(4): 857-883

[28]

Hong Y. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discr. Contin. Dynam. Syst., 2017, 37(10): 5355-5365

[29]

Huang, X.: Global uniform in $N$ estimates for solutions of a system of Hartree–Fock–Bogoliubov type in the Gross–Pitaveskii regime. arXiv:2206.06269 (2022)

[30]

Klainerman S, Machedon M. On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Commun. Math. Phys., 2008, 279(1): 169-185

[31]

Kuz E. Exact evolution versus mean field with second-order correction for bosons interacting via short-range two-body potential. Differ. Integr. Equ., 2017, 30(7–8): 587-630

[32]

Muscalu C, Pipher J, Tao T, Thiele C. Bi-parameter paraproducts. Acta Math., 2004, 193: 269-296

[33]

Napiórkowski, M.: Dynamics of interacting bosons: a compact review. In: Density Functionals for Many-Particle Systems—Mathematical Theory and Physical Applications of Effective Equations, pp. 117–154. World Sci. Publ., Hackensack, NJ (2023)

[34]

Stein EM . Singular Integrals and Differentiability Properties of Functions, 1970, Princeton, NJ: Princeton University Press

[35]

Stein EM, Murphy TS. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton, NJ: Princeton University Press

[36]

Tao T. Nonlinear Dispersive Equations: Local and Global Analysis, 2006 AMS, Providence, RI

[37]

Torres RH, Ward EL. Leibniz’s rule, sampling and wavelets on mixed Lebesgue spaces. J. Fourier Anal. Appl., 2015, 21(5): 1053-1076

[38]

Xie Z. Derivation of a nonlinear Schrödinger equation with a general power-type nonlinearity in $d=1,2$. Differ. Integr. Equ., 2015, 28(5–6): 455-504

[39]

Zhang J, Zheng J. Scattering theory for nonlinear Schrödinger equations with inverse-square potential. J. Funct. Anal., 2014, 267(8): 2907-2932

AI Summary AI Mindmap
PDF

354

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/