Kähler–Ricci Flow on ${\textbf{G}}$-Spherical Fano Manifolds

Feng Wang , Xiaohua Zhu

Peking Mathematical Journal ›› : 1 -29.

PDF
Peking Mathematical Journal ›› : 1 -29. DOI: 10.1007/s42543-024-00088-6
Original Article

Kähler–Ricci Flow on ${\textbf{G}}$-Spherical Fano Manifolds

Author information +
History +
PDF

Abstract

We prove that the Gromov–Hausdorff limit of Kähler–Ricci flow on a ${\textbf{G}}$-spherical Fano manifold X is a ${\textbf{G}}$-spherical ${\mathbb {Q}}$-Fano variety $X_{\infty }$, which admits a (singular) Kähler–Ricci soliton. Moreover, the ${\textbf{G}}$-spherical variety structure of $X_{\infty }$ can be constructed as a center of torus ${\mathbb {C}}^*$-degeneration of X induced by an element in the Lie algebra of Cartan torus of ${\textbf{G}}$.

Cite this article

Download citation ▾
Feng Wang, Xiaohua Zhu. Kähler–Ricci Flow on ${\textbf{G}}$-Spherical Fano Manifolds. Peking Mathematical Journal 1-29 DOI:10.1007/s42543-024-00088-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Key Research and Development Program of China(No. 2022YFA1005501)

National Natural Science Foundation of China(NSFC 12031017)

National Key R &D Program of China(2020YFA0712800)

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/