Kähler–Ricci Flow on ${\textbf{G}}$-Spherical Fano Manifolds

Feng Wang, Xiaohua Zhu

Peking Mathematical Journal ›› 2024

Peking Mathematical Journal ›› 2024 DOI: 10.1007/s42543-024-00088-6
Original Article

Kähler–Ricci Flow on ${\textbf{G}}$-Spherical Fano Manifolds

Author information +
History +

Abstract

We prove that the Gromov–Hausdorff limit of Kähler–Ricci flow on a ${\textbf{G}}$-spherical Fano manifold X is a ${\textbf{G}}$-spherical ${\mathbb {Q}}$-Fano variety $X_{\infty }$, which admits a (singular) Kähler–Ricci soliton. Moreover, the ${\textbf{G}}$-spherical variety structure of $X_{\infty }$ can be constructed as a center of torus ${\mathbb {C}}^*$-degeneration of X induced by an element in the Lie algebra of Cartan torus of ${\textbf{G}}$.

Cite this article

Download citation ▾
Feng Wang, Xiaohua Zhu. Kähler–Ricci Flow on ${\textbf{G}}$-Spherical Fano Manifolds. Peking Mathematical Journal, 2024 https://doi.org/10.1007/s42543-024-00088-6
Funding
National Key Research and Development Program of China(No. 2022YFA1005501); National Natural Science Foundation of China(NSFC 12031017); National Key R &D Program of China(12271009)

Accesses

Citations

Detail

Sections
Recommended

/