RO(G)-Graded Homotopy Fixed Point Spectral Sequence for Height 2 Morava E-Theory

Zhipeng Duan , Hana Jia Kong , Guchuan Li , Yunze Lu , Guozhen Wang

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) : 641 -710.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) :641 -710. DOI: 10.1007/s42543-024-00087-7
Original Article
research-article

RO(G)-Graded Homotopy Fixed Point Spectral Sequence for Height 2 Morava E-Theory

Author information +
History +
PDF

Abstract

We consider

G=Q8,SD16,G24,
and
G48
as finite subgroups of the Morava stabilizer group which acts on the height 2 Morava E-theory
E2
at the prime 2. We completely compute the G-homotopy fixed point spectral sequences of
E2
. Our computation uses recently developed equivariant techniques since Hill, Hopkins, and Ravenel. We also compute the
(-σi)
-graded
Q8
- and
SD16
-homotopy fixed point spectral sequences, where
σi
is a non-trivial one-dimensional representation of
Q8
.

Keywords

Morava E-theory / Topological modular forms / RO(G)-graded homotopy groups / 55P42 / 20J06 / 55Q91 / 55P60

Cite this article

Download citation ▾
Zhipeng Duan, Hana Jia Kong, Guchuan Li, Yunze Lu, Guozhen Wang. RO(G)-Graded Homotopy Fixed Point Spectral Sequence for Height 2 Morava E-Theory. Peking Mathematical Journal, 2025, 8(4): 641-710 DOI:10.1007/s42543-024-00087-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, J.F.: Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture. In: Algebraic Topology (Aarhus, Denmark 1982), Lect. Notes in Math., vol. 1051, pp. 483–532. Springer-Verlag, Berlin (1984)

[2]

Atiyah, M.F., MacDonald, I.G.: Introduction to Commutative Algebra, Student Economy Edition. Addison-Wesley Ser. Math., Westview Press, Boulder, CO (2016)

[3]

Bauer, T.: Computation of the homotopy of the spectrum tmf. In: Groups, Homotopy and Configuration Spaces, Geom. Topol. Monogr., vol. 13, pp. 11–40. Geometry & Topology Publications, Coventry (2008)

[4]

Beaudry A. The algebraic duality resolution at p=2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p=2$$\end{document}. Algebr. Geom. Topol., 2015, 15(6): 3653-3705.

[5]

Beaudry A. Towards the homotopy of the K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local Moore spectrum at p=2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p=2$$\end{document}. Adv. Math., 2017, 306: 722-788.

[6]

Beaudry A. The chromatic splitting conjecture at n=p=2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n = p = 2$$\end{document}. Geom. Topol., 2017, 21(6): 3213-3230.

[7]

Beaudry A, Bobkova I, Hill MA, Stojanoska V. Invertible K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local E\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E$$\end{document}-modules in C4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_4$$\end{document}-spectra. Algebr. Geom. Topol., 2020, 20(7): 3423-3503.

[8]

Beaudry A, Goerss PG, Henn H-W. Chromatic splitting for the K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local sphere at p=2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p = 2$$\end{document}. Geom. Topol., 2022, 26(1): 377-476.

[9]

Behrens M , Mahowald M, Quigley JD. The 2-primary Hurewicz image of tmf. Geom. Topol., 2023, 27(7): 2763-2831.

[10]

Behrens M, Ormsby K. On the homotopy of Q(3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Q(3)$$\end{document} and Q(5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Q(5)$$\end{document} at the prime 2. Algebr. Geom. Topol., 2016, 16(5): 2459-2534.

[11]

Bobkova I, Goerss PG. Topological resolutions in K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local homotopy theory at the prime 2. J. Topol., 2018, 11(4): 918-957.

[12]

Bökstedt M , Madsen I. Topological cyclic homology of the integers. Astérisque, 1994, 226(7–8): 57-143. DOI:

[13]

Bousfield AK. The localization of spectra with respect to homology. Topology, 1979, 18(4): 257-281.

[14]

Bujard, C.: Finite subgroups of extended Morava stabilizer groups. arXiv:1206.1951 (2012)

[15]

Devinatz ES, Hopkins MJ. Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups. Topology, 2004, 43(1): 1-47.

[16]

Duan, Z., Li, G., Shi, X.L.D.: Vanishing lines in chromatic homotopy theory. arXiv:2204.08600 (2022)

[17]

Goerss, P.G., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured Ring Spectra, London Math. Soc. Lecture Note Ser., vol. 315, pp. 151–200. Cambridge Univ. Press, Cambridge (2004)

[18]

Goerss PG, Henn H-W, Mahowald M, Rezk C. A resolution of the K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local sphere at the prime 3. Ann. Math. (2), 2005, 162(2): 777-822.

[19]

Goerss PG, Henn H-W, Mahowald M. The rational homotopy of the K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local sphere and the chromatic splitting conjecture for the prime 3 and level 2. Doc. Math., 2014, 19: 1271-1290.

[20]

Greenlees, J.P.C.: Four approaches to cohomology theories with reality. In: An Alpine Bouquet of Algebraic Topology, Comtemp. Math., vol. 708, pp. 139–156. AMS, Providence, RI (2018)

[21]

Greenlees, J.P.C., May, J.P.: Generalized Tate Cohomology. Mem. Am. Math. Soc. 113(543), viii+178 pp. (1995)

[22]

Guillou, B.J., Slone, C.: The slices of quaternionic Eilenberg–Mac Lane spectra. arXiv:2204.03127 (2022)

[23]

Hahn J, Shi XLD. Real orientations of Lubin–Tate spectra. Invent. Math., 2020, 221(3): 731-776.

[24]

Henn, H.-W.: On finite resolutions of K(n)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(n)$$\end{document}-local spheres. In: Elliptic Cohomology, London Math. Soc. Lecture Note Ser., vol. 342, pp. 122–169. Cambridge Univ. Press, Cambridge (2007)

[25]

Henn, H.-W.: The centralizer resolution of the K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local sphere at the prime 2. In: Homotopy Theory: Tools and Applications, Contemp. Math., vol. 729, pp. 93–128. AMS, Providence, RI (2019)

[26]

Hewett T. Finite subgroups of division algebras over local fields. J. Algebra, 1995, 173(3): 518-548.

[27]

Hill MA, Lawson T. Topological modular forms with level structure. Invent. Math., 2016, 203(2): 359-416.

[28]

Hill MA, Meier L. The C2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_2$$\end{document}-spectrum Tmf1(3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm Tmf}_1(3)$$\end{document} and its invertible modules. Algebr. Geom. Topol., 2017, 17(4): 1953-2011.

[29]

Hill MA, Hopkins MJ, Ravenel DC. On the nonexistence of elements of Kervaire invariant one. Ann. Math. (2), 2016, 184(1): 1-262.

[30]

Hill MA, Hopkins MJ, Ravenel DC. The slice spectral sequence for the C4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_4$$\end{document} analog of real K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K$$\end{document}-theory. Forum Math., 2017, 29(2): 383-447.

[31]

Hill, M.A., Shi, X.L.D., Wang, G., Xu, Z.: The slice spectral sequence of a C4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_4$$\end{document}-equivariant height-4 Lubin-Tate theory. Mem. Am. Math. Soc. 288(1429), v+119 pp. (2023)

[32]

Hopkins, M.J.: Algebraic topology and modular forms. In: Proceedings of the International Congress of Mathematicians, vol. I (Beijing, 2002), pp. 291–317. Higher Ed. Press, Beijing (2002)

[33]

Hopkins, M.J., Mahowald, M.: From elliptic curves to homotopy theory. In: Topological Modular Forms, Math. Surveys Monogr., vol. 201, pp. 261–285. AMS, Providence, RI (2014)

[34]

Hopkins, M.J., Mahowald, M., Sadofsky, H.: Constructions of elements in Picard groups. In: Topology and Representation Theory (Evanston, IL, 1992), Contemp. Math., vol. 158, pp. 89–126. AMS, Providence, RI (1994)

[35]

Hovey, M., Strickland, N.P.: Morava K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K$$\end{document}-theories and localisation. Mem. Am. Math. Soc. 139(666), viii+100 pp. (1999)

[36]

Isaksen, D.C.: The cohomology of motivic A(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A(2)$$\end{document}. Homol. Homotopy Appl. 11(2), 251–274 (2009)

[37]

Isaksen, D.C.: The homotopy of C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{C}$$\end{document}-motivic modular forms. arXiv:1811.07937 (2018)

[38]

Li, G., Shi, X.L.D., Wang, G., Xu, Z.: Hurewicz images of real bordism theory and real Johnson–Wilson theories. Adv. Math. 342, 67–115 (2019)

[39]

Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. Math. (2) 81, 380–387 (1965)

[40]

Lurie, J.: Elliptic cohomology II: Orientations. https://people.math.rochester.edu/faculty/doug/otherpapers/Lurie-Elliptic-II.pdf (2018)

[41]

Meier, L., Shi, X.L.D., Zeng, M.: The localized slice spectral sequence, norms of Real bordism, and the Segal conjecture. Adv. Math. 412, Paper No. 108804, 74 pp. (2023)

[42]

Morava J. Noetherian localisations of categories of cobordism comodules. Ann. Math. (2), 1985, 121(1): 1-39.

[43]

Quillen D. On the formal group laws of unoriented and complex cobordism theory. Bull. Am. Math. Soc., 1969, 75: 1293-1298.

[44]

Ravenel, D.C.: A novice’s guide to the Adams–Novikov spectral sequence. In: Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658, pp. 404–475. Springer-Verlag, Berlin (1978)

[45]

Ravenel, D.C.: Nilpotence and Periodicity in Stable Homotopy Theory, (Appendix C by Jeff Smith). Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ (1992)

[46]

Rezk, C.: Notes on the Hopkins–Miller theorem. In: Homotopy Theory via Algebraic Geometry and Group Representations (Evanston, IL, 1997), Contemp. Math., vol. 220, pp. 313–366. AMS, Providence, RI (1998)

[47]

Schwede, S.: Lectures on equivariant stable homotopy theory. http://131.220.132.179/people/schwede/equivariant.pdf (2023)

[48]

Toda, H.: Composition Methods in Homotopy Groups of Spheres. Annals of Mathematics Studies, vol. 49. Princeton University Press, Princeton, NJ (1962)

[49]

Ullman, J.R.: On the Regular Slice Spectral Sequence. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (2013)

Funding

Shanghai Science and Technology Development Foundation(No. 20QA1401600)

National Science Foundation(No. DMS-1926686)

RIGHTS & PERMISSIONS

Peking University

PDF

738

Accesses

0

Citation

Detail

Sections
Recommended

/