RO(G)-Graded Homotopy Fixed Point Spectral Sequence for Height 2 Morava E-Theory
Zhipeng Duan , Hana Jia Kong , Guchuan Li , Yunze Lu , Guozhen Wang
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) : 641 -710.
RO(G)-Graded Homotopy Fixed Point Spectral Sequence for Height 2 Morava E-Theory
We consider
Morava E-theory / Topological modular forms / RO(G)-graded homotopy groups / 55P42 / 20J06 / 55Q91 / 55P60
| [1] |
Adams, J.F.: Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture. In: Algebraic Topology (Aarhus, Denmark 1982), Lect. Notes in Math., vol. 1051, pp. 483–532. Springer-Verlag, Berlin (1984) |
| [2] |
Atiyah, M.F., MacDonald, I.G.: Introduction to Commutative Algebra, Student Economy Edition. Addison-Wesley Ser. Math., Westview Press, Boulder, CO (2016) |
| [3] |
Bauer, T.: Computation of the homotopy of the spectrum tmf. In: Groups, Homotopy and Configuration Spaces, Geom. Topol. Monogr., vol. 13, pp. 11–40. Geometry & Topology Publications, Coventry (2008) |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Bujard, C.: Finite subgroups of extended Morava stabilizer groups. arXiv:1206.1951 (2012) |
| [15] |
|
| [16] |
Duan, Z., Li, G., Shi, X.L.D.: Vanishing lines in chromatic homotopy theory. arXiv:2204.08600 (2022) |
| [17] |
Goerss, P.G., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured Ring Spectra, London Math. Soc. Lecture Note Ser., vol. 315, pp. 151–200. Cambridge Univ. Press, Cambridge (2004) |
| [18] |
|
| [19] |
|
| [20] |
Greenlees, J.P.C.: Four approaches to cohomology theories with reality. In: An Alpine Bouquet of Algebraic Topology, Comtemp. Math., vol. 708, pp. 139–156. AMS, Providence, RI (2018) |
| [21] |
Greenlees, J.P.C., May, J.P.: Generalized Tate Cohomology. Mem. Am. Math. Soc. 113(543), viii+178 pp. (1995) |
| [22] |
Guillou, B.J., Slone, C.: The slices of quaternionic Eilenberg–Mac Lane spectra. arXiv:2204.03127 (2022) |
| [23] |
|
| [24] |
Henn, H.-W.: On finite resolutions of K(n)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(n)$$\end{document}-local spheres. In: Elliptic Cohomology, London Math. Soc. Lecture Note Ser., vol. 342, pp. 122–169. Cambridge Univ. Press, Cambridge (2007) |
| [25] |
Henn, H.-W.: The centralizer resolution of the K(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(2)$$\end{document}-local sphere at the prime 2. In: Homotopy Theory: Tools and Applications, Contemp. Math., vol. 729, pp. 93–128. AMS, Providence, RI (2019) |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Hill, M.A., Shi, X.L.D., Wang, G., Xu, Z.: The slice spectral sequence of a C4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_4$$\end{document}-equivariant height-4 Lubin-Tate theory. Mem. Am. Math. Soc. 288(1429), v+119 pp. (2023) |
| [32] |
Hopkins, M.J.: Algebraic topology and modular forms. In: Proceedings of the International Congress of Mathematicians, vol. I (Beijing, 2002), pp. 291–317. Higher Ed. Press, Beijing (2002) |
| [33] |
Hopkins, M.J., Mahowald, M.: From elliptic curves to homotopy theory. In: Topological Modular Forms, Math. Surveys Monogr., vol. 201, pp. 261–285. AMS, Providence, RI (2014) |
| [34] |
Hopkins, M.J., Mahowald, M., Sadofsky, H.: Constructions of elements in Picard groups. In: Topology and Representation Theory (Evanston, IL, 1992), Contemp. Math., vol. 158, pp. 89–126. AMS, Providence, RI (1994) |
| [35] |
Hovey, M., Strickland, N.P.: Morava K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K$$\end{document}-theories and localisation. Mem. Am. Math. Soc. 139(666), viii+100 pp. (1999) |
| [36] |
Isaksen, D.C.: The cohomology of motivic A(2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A(2)$$\end{document}. Homol. Homotopy Appl. 11(2), 251–274 (2009) |
| [37] |
Isaksen, D.C.: The homotopy of C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{C}$$\end{document}-motivic modular forms. arXiv:1811.07937 (2018) |
| [38] |
Li, G., Shi, X.L.D., Wang, G., Xu, Z.: Hurewicz images of real bordism theory and real Johnson–Wilson theories. Adv. Math. 342, 67–115 (2019) |
| [39] |
Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. Math. (2) 81, 380–387 (1965) |
| [40] |
Lurie, J.: Elliptic cohomology II: Orientations. https://people.math.rochester.edu/faculty/doug/otherpapers/Lurie-Elliptic-II.pdf (2018) |
| [41] |
Meier, L., Shi, X.L.D., Zeng, M.: The localized slice spectral sequence, norms of Real bordism, and the Segal conjecture. Adv. Math. 412, Paper No. 108804, 74 pp. (2023) |
| [42] |
|
| [43] |
|
| [44] |
Ravenel, D.C.: A novice’s guide to the Adams–Novikov spectral sequence. In: Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658, pp. 404–475. Springer-Verlag, Berlin (1978) |
| [45] |
Ravenel, D.C.: Nilpotence and Periodicity in Stable Homotopy Theory, (Appendix C by Jeff Smith). Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ (1992) |
| [46] |
Rezk, C.: Notes on the Hopkins–Miller theorem. In: Homotopy Theory via Algebraic Geometry and Group Representations (Evanston, IL, 1997), Contemp. Math., vol. 220, pp. 313–366. AMS, Providence, RI (1998) |
| [47] |
Schwede, S.: Lectures on equivariant stable homotopy theory. http://131.220.132.179/people/schwede/equivariant.pdf (2023) |
| [48] |
Toda, H.: Composition Methods in Homotopy Groups of Spheres. Annals of Mathematics Studies, vol. 49. Princeton University Press, Princeton, NJ (1962) |
| [49] |
Ullman, J.R.: On the Regular Slice Spectral Sequence. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (2013) |
Peking University
/
| 〈 |
|
〉 |