PDF
Abstract
We study abelian subcategories and torsion pairs in Abramovich–Polishchuk’s heart. And we apply the construction from Liu (J Reine Angew Math 770:135–157, 2021) on a full triangulated subcategory \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {D}}_S^{\le 1}$$\end{document}
in \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D(X\times S)$$\end{document}
, for an arbitrary smooth projective variety S. We also define a notion of l-th level stability, which is a generalization of the slope stability and the Gieseker stability. We show that for any object E in Abramovich–Polishchuk’s heart, there is a unique filtration whose factors are l-th level semistable, and the phase vectors are decreasing in a lexicographic order.
Keywords
Bridgeland stability conditions
/
Product varieties
/
Filtrations
/
14F08
/
14J40
/
18E99
Cite this article
Download citation ▾
Yucheng Liu.
Filtrations and Torsion Pairs in Abramovich–Polishchuk’s Heart.
Peking Mathematical Journal, 2025, 8(4): 767-789 DOI:10.1007/s42543-024-00084-w
| [1] |
Abramovich D, Polishchuk A. Sheaves of t\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t$$\end{document}-structures and valuative criteria for stable complexes. J. Reine Angew. Math., 2006, 590: 89-130. DOI:
|
| [2] |
Bayer A, Lahoz M, Macrì E, Nuer H, Perry A, Stellari P. Stability conditions in families. Publ. Math. Inst. Hautes Étud. Sci., 2021, 133: 157-325.
|
| [3] |
Bayer A, Macrì E. MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations. Invent. Math., 2014, 198(3): 505-590.
|
| [4] |
Bayer A, Macrì E. Projectivity and birational geometry of Bridgeland moduli spaces. J. Am. Math. Soc., 2014, 27(3): 707-752.
|
| [5] |
Bayer A, Macrì E, Toda Y. Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities. J. Algebraic Geom., 2014, 23(1): 117-163.
|
| [6] |
Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analyse et topologie sur les espaces singuliers (I) (Luminy, 1981), Astérisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982)
|
| [7] |
Bridgeland T. Stability conditions on triangulated categories. Ann. Math. (2), 2007, 166(2): 317-345.
|
| [8] |
Bridgeland T. Stability conditions on K3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K3$$\end{document} surfaces. Duke Math. J., 2008, 141(2): 241-291.
|
| [9] |
Bridgeland T. Scattering diagrams, Hall algebras and stability conditions. Algebraic Geom., 2017, 4(5): 523-561.
|
| [10] |
Douglas, M.R.: Dirichlet branes, homological mirror symmetry, and stability. In: Proceedings of the International Congress of Mathematicians, vol. III (Beijing, 2002), pp. 395–408. Higher Ed. Press, Beijing (2002)
|
| [11] |
Happel, D., Reiten, I., Smalø, S.O.: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 120(575), viii+88 pp. (1996)
|
| [12] |
Harder G, Narasimhan MS. On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann., 1975, 212: 215-248.
|
| [13] |
Hotta, R., Takeuchi, K., Tanisaki, T.: D\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D$$\end{document}-Modules, Perverse Sheaves, and Representation Theory. Progr. Math., vol. 236. Birkhäuser Boston, Inc., Boston, MA (2008)
|
| [14] |
Huybrechts D, Lehn M. The Geometry of Moduli Spaces of Sheaves, 20102Cambridge. Cambridge Mathematical Library. Cambridge University Press.
|
| [15] |
Joyce D. Conjectures on Bridgeland stability for Fukaya categories of Calabi–Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. EMS Surv. Math. Sci., 2015, 2(1): 1-62.
|
| [16] |
Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435 (2008)
|
| [17] |
Lazarsfeld, R.: Positivity in Algebraic Geometry, I. Classical Setting: Line Bundles and Linear Series. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 48. Springer, Berlin (2004)
|
| [18] |
Liu, Y.: Some quadratic inequalities on product varieties. arXiv:2010.14039 (2020)
|
| [19] |
Liu Y. Stability conditions on product varieties. J. Reine Angew. Math., 2021, 770: 135-157.
|
| [20] |
Macrì, E., Schmidt, B.: Lectures on Bridgeland stability. In: Moduli of Curves, pp. 139–211. Springer, Cham (2017)
|
| [21] |
Polishchuk A. Constant families of t\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t$$\end{document}-structures on derived categories of coherent sheaves. Mosc. Math. J., 2007, 7(1): 109-134, 167.
|
| [22] |
Smith, I.: Stability conditions in symplectic topology. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, vol. II. Invited Lectures, pp. 969–991. World Scientific, Hackensack, NJ (2018)
|
| [23] |
Toda Y. Curve counting theories via stable objects. I: DT/PT correspondence. J. Am. Math. Soc., 2010, 23(4): 1119-1157.
|
| [24] |
Toda Y. Curve counting theories via stable objects. II: DT/ncDT flop formula. J. Reine Angew. Math., 2013, 675: 1-51.
|
Funding
National Natural Science Foundation of China(12201011)
RIGHTS & PERMISSIONS
Peking University