Filtrations and Torsion Pairs in Abramovich–Polishchuk’s Heart

Yucheng Liu

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) : 767 -789.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) :767 -789. DOI: 10.1007/s42543-024-00084-w
Original Article
research-article

Filtrations and Torsion Pairs in Abramovich–Polishchuk’s Heart

Author information +
History +
PDF

Abstract

We study abelian subcategories and torsion pairs in Abramovich–Polishchuk’s heart. And we apply the construction from Liu (J Reine Angew Math 770:135–157, 2021) on a full triangulated subcategory

DS1
in
D(X×S)
, for an arbitrary smooth projective variety S. We also define a notion of l-th level stability, which is a generalization of the slope stability and the Gieseker stability. We show that for any object E in Abramovich–Polishchuk’s heart, there is a unique filtration whose factors are l-th level semistable, and the phase vectors are decreasing in a lexicographic order.

Keywords

Bridgeland stability conditions / Product varieties / Filtrations / 14F08 / 14J40 / 18E99

Cite this article

Download citation ▾
Yucheng Liu. Filtrations and Torsion Pairs in Abramovich–Polishchuk’s Heart. Peking Mathematical Journal, 2025, 8(4): 767-789 DOI:10.1007/s42543-024-00084-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramovich D, Polishchuk A. Sheaves of t\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t$$\end{document}-structures and valuative criteria for stable complexes. J. Reine Angew. Math., 2006, 590: 89-130. DOI:

[2]

Bayer A, Lahoz M, Macrì E, Nuer H, Perry A, Stellari P. Stability conditions in families. Publ. Math. Inst. Hautes Étud. Sci., 2021, 133: 157-325.

[3]

Bayer A, Macrì E. MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations. Invent. Math., 2014, 198(3): 505-590.

[4]

Bayer A, Macrì E. Projectivity and birational geometry of Bridgeland moduli spaces. J. Am. Math. Soc., 2014, 27(3): 707-752.

[5]

Bayer A, Macrì E, Toda Y. Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities. J. Algebraic Geom., 2014, 23(1): 117-163.

[6]

Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analyse et topologie sur les espaces singuliers (I) (Luminy, 1981), Astérisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982)

[7]

Bridgeland T. Stability conditions on triangulated categories. Ann. Math. (2), 2007, 166(2): 317-345.

[8]

Bridgeland T. Stability conditions on K3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K3$$\end{document} surfaces. Duke Math. J., 2008, 141(2): 241-291.

[9]

Bridgeland T. Scattering diagrams, Hall algebras and stability conditions. Algebraic Geom., 2017, 4(5): 523-561.

[10]

Douglas, M.R.: Dirichlet branes, homological mirror symmetry, and stability. In: Proceedings of the International Congress of Mathematicians, vol. III (Beijing, 2002), pp. 395–408. Higher Ed. Press, Beijing (2002)

[11]

Happel, D., Reiten, I., Smalø, S.O.: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 120(575), viii+88 pp. (1996)

[12]

Harder G, Narasimhan MS. On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann., 1975, 212: 215-248.

[13]

Hotta, R., Takeuchi, K., Tanisaki, T.: D\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D$$\end{document}-Modules, Perverse Sheaves, and Representation Theory. Progr. Math., vol. 236. Birkhäuser Boston, Inc., Boston, MA (2008)

[14]

Huybrechts D, Lehn M. The Geometry of Moduli Spaces of Sheaves, 20102Cambridge. Cambridge Mathematical Library. Cambridge University Press.

[15]

Joyce D. Conjectures on Bridgeland stability for Fukaya categories of Calabi–Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. EMS Surv. Math. Sci., 2015, 2(1): 1-62.

[16]

Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435 (2008)

[17]

Lazarsfeld, R.: Positivity in Algebraic Geometry, I. Classical Setting: Line Bundles and Linear Series. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 48. Springer, Berlin (2004)

[18]

Liu, Y.: Some quadratic inequalities on product varieties. arXiv:2010.14039 (2020)

[19]

Liu Y. Stability conditions on product varieties. J. Reine Angew. Math., 2021, 770: 135-157.

[20]

Macrì, E., Schmidt, B.: Lectures on Bridgeland stability. In: Moduli of Curves, pp. 139–211. Springer, Cham (2017)

[21]

Polishchuk A. Constant families of t\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$t$$\end{document}-structures on derived categories of coherent sheaves. Mosc. Math. J., 2007, 7(1): 109-134, 167.

[22]

Smith, I.: Stability conditions in symplectic topology. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, vol. II. Invited Lectures, pp. 969–991. World Scientific, Hackensack, NJ (2018)

[23]

Toda Y. Curve counting theories via stable objects. I: DT/PT correspondence. J. Am. Math. Soc., 2010, 23(4): 1119-1157.

[24]

Toda Y. Curve counting theories via stable objects. II: DT/ncDT flop formula. J. Reine Angew. Math., 2013, 675: 1-51.

Funding

National Natural Science Foundation of China(12201011)

RIGHTS & PERMISSIONS

Peking University

PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

/