Filtrations and Torsion Pairs in Abramovich–Polishchuk’s Heart

Yucheng Liu

Peking Mathematical Journal ›› : 1 -23.

PDF
Peking Mathematical Journal ›› : 1 -23. DOI: 10.1007/s42543-024-00084-w
Original Article

Filtrations and Torsion Pairs in Abramovich–Polishchuk’s Heart

Author information +
History +
PDF

Abstract

We study abelian subcategories and torsion pairs in Abramovich–Polishchuk’s heart. And we apply the construction from Liu (J Reine Angew Math 770:135–157, 2021) on a full triangulated subcategory ${\mathcal {D}}_S^{\le 1}$ in $D(X\times S)$, for an arbitrary smooth projective variety S. We also define a notion of l-th level stability, which is a generalization of the slope stability and the Gieseker stability. We show that for any object E in Abramovich–Polishchuk’s heart, there is a unique filtration whose factors are l-th level semistable, and the phase vectors are decreasing in a lexicographic order.

Cite this article

Download citation ▾
Yucheng Liu. Filtrations and Torsion Pairs in Abramovich–Polishchuk’s Heart. Peking Mathematical Journal 1-23 DOI:10.1007/s42543-024-00084-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China(12201011)

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/