$\textrm{Spin}(7)$ Is Unacceptable

Gaëtan Chenevier , Wee Teck Gan

Peking Mathematical Journal ›› : 1 -39.

PDF
Peking Mathematical Journal ›› : 1 -39. DOI: 10.1007/s42543-023-00083-3
Original Article

$\textrm{Spin}(7)$ Is Unacceptable

Author information +
History +
PDF

Abstract

We classify to some extent the pairs of group morphisms $\Gamma \rightarrow \textrm{Spin}(7)$ which are element-conjugate but not globally conjugate. As an application, we study the case where $\Gamma $ is the Weil group of a p-adic local field, which is relevant to the recent approach to the local Langlands correspondence for $\textrm{G}_2$ and $\textrm{PGSp}_6$ in Gan and Savin (Forum Math Pi 11:e28, 2023). As a second application, we improve some result in Kret and Shin (J Eur Math Soc 25(1):75–152, 2023) about $\textrm{GSpin}_7$-valued Galois representations.

Cite this article

Download citation ▾
Gaëtan Chenevier, Wee Teck Gan. $\textrm{Spin}(7)$ Is Unacceptable. Peking Mathematical Journal 1-39 DOI:10.1007/s42543-023-00083-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

CNRS(ANR-19-CE40-0015-02 (COLOSS))

Singapore Government MOE(R-146-000-320-114)

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/