Spin(7)
Is Unacceptable

Gaëtan Chenevier , Wee Teck Gan

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) : 601 -639.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) :601 -639. DOI: 10.1007/s42543-023-00083-3
Original Article
research-article

Spin(7)
Is Unacceptable

Author information +
History +
PDF

Abstract

We classify to some extent the pairs of group morphisms

ΓSpin(7)
which are element-conjugate but not globally conjugate. As an application, we study the case where
Γ
is the Weil group of a p-adic local field, which is relevant to the recent approach to the local Langlands correspondence for
G2
and
PGSp6
in Gan and Savin (Forum Math Pi 11:e28, 2023). As a second application, we improve some result in Kret and Shin (J Eur Math Soc 25(1):75–152, 2023) about
GSpin7
-valued Galois representations.

Keywords

Spin groups / Local-global conjugacy / Langlands correspondence / 22C05 / 20G15 / 20G41 / 11F80 / 11R39

Cite this article

Download citation ▾
Gaëtan Chenevier, Wee Teck Gan.
Spin(7)
Is Unacceptable. Peking Mathematical Journal, 2025, 8(4): 601-639 DOI:10.1007/s42543-023-00083-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, J.F.: Lectures on Exceptional Lie Groups. Chicago Lectures of Mathematics. University of Chicago Press, Chicago, IL (1996)

[2]

Blasius D. On multiplicities for SL(n)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm SL}(n)$$\end{document}. Isr. J. Math., 1994, 88: 237-251.

[3]

Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics, vol. 98. Springer-Verlag, New York (1985)

[4]

Chenevier G. Subgroups of Spin(7)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm Spin}(7)$$\end{document} or SO(7)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm SO}(7)$$\end{document} with each element conjugate to some element of G2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm G}_2$$\end{document} and applications to automorphic forms. Doc. Math., 2019, 24: 95-161.

[5]

Chenevier, G., Gan, W.T.: Letter to M. Larsen (personal communication) (2018)

[6]

Gallagher PX. Determinants of representations of finite groups. Abh. Math. Semin. Univ. Hambg., 1965, 28: 162-167.

[7]

Gan WT, Savin G. The local Langlands conjecture for G2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm G}_2$$\end{document}. Forum Math. Pi., 2023, 11e28

[8]

Griess, R.: Basic conjugacy theorems for G2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm G}_2$$\end{document}. Invent. Math. 121(2), 257–277 (1995)

[9]

Kret A , Shin SW. Galois representations for general symplectic groups. J. Eur. Math. Soc., 2023, 25(1): 75-152.

[10]

Humphreys JE. Linear Algebraic Groups, 1975, Berlin. Springer21

[11]

Larsen M. On the conjugacy of element-conjugate homomorphisms. Isr. J. Math., 1994, 88: 253-277.

[12]

Larsen M. On the conjugacy of element-conjugate homomorphisms II. Quart. J. Math. Oxf. Ser. (2), 1996, 47(185): 73-85.

[13]

Tate, J.: Number Theoretic Background. In: Automorphic Forms, Representations and L\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L$$\end{document}-functions (Proc. Sympos., Oregon State Univ., Corvallis, OR, 1977), Part 2, Proc. Sympos. Pure Math., vol. 33, pp. 3–26. American Mathematical Society, Providence, RI (1979)

[14]

Wang S . On local and global conjugacy. J. Algebra, 2015, 439: 334-359.

[15]

Weil A. Exercices dyadiques. Invent. Math., 1974, 27: 1-22.

[16]

Yu J. Acceptable compact Lie groups. Peking Math. J., 2022, 5(2): 427-446.

Funding

CNRS(ANR-19-CE40-0015-02 (COLOSS))

Singapore Government MOE(R-146-000-320-114)

RIGHTS & PERMISSIONS

Peking University

PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

/