$\textrm{Spin}(7)$ Is Unacceptable

Gaëtan Chenevier, Wee Teck Gan

Peking Mathematical Journal ›› 2024

Peking Mathematical Journal ›› 2024 DOI: 10.1007/s42543-023-00083-3
Original Article

$\textrm{Spin}(7)$ Is Unacceptable

Author information +
History +

Abstract

We classify to some extent the pairs of group morphisms $\Gamma \rightarrow \textrm{Spin}(7)$ which are element-conjugate but not globally conjugate. As an application, we study the case where $\Gamma $ is the Weil group of a p-adic local field, which is relevant to the recent approach to the local Langlands correspondence for $\textrm{G}_2$ and $\textrm{PGSp}_6$ in Gan and Savin (Forum Math Pi 11:e28, 2023). As a second application, we improve some result in Kret and Shin (J Eur Math Soc 25(1):75–152, 2023) about $\textrm{GSpin}_7$-valued Galois representations.

Cite this article

Download citation ▾
Gaëtan Chenevier, Wee Teck Gan. $\textrm{Spin}(7)$ Is Unacceptable. Peking Mathematical Journal, 2024 https://doi.org/10.1007/s42543-023-00083-3
Funding
CNRS(ANR-19-CE40-0015-02 (COLOSS)); Singapore Government MOE(R-146-000-320-114)

Accesses

Citations

Detail

Sections
Recommended

/