The Bochner–Riesz Problem: An Old Approach Revisited

Shaoming Guo , Changkeun Oh , Hong Wang , Shukun Wu , Ruixiang Zhang

Peking Mathematical Journal ›› 2024, Vol. 8 ›› Issue (2) : 201 -270.

PDF
Peking Mathematical Journal ›› 2024, Vol. 8 ›› Issue (2) : 201 -270. DOI: 10.1007/s42543-023-00082-4
Original Article

The Bochner–Riesz Problem: An Old Approach Revisited

Author information +
History +
PDF

Abstract

We show that the recent techniques developed to study the Fourier restriction problem apply equally well to the Bochner–Riesz problem. This is achieved via applying a pseudo-conformal transformation and a two-parameter induction-on-scales argument. As a consequence, we improve the Bochner–Riesz problem to the best known range of the Fourier restriction problem in all high dimensions.

Keywords

Bochner–Riesz operator / Polynomial method / Restriction problem

Cite this article

Download citation ▾
Shaoming Guo, Changkeun Oh, Hong Wang, Shukun Wu, Ruixiang Zhang. The Bochner–Riesz Problem: An Old Approach Revisited. Peking Mathematical Journal, 2024, 8(2): 201-270 DOI:10.1007/s42543-023-00082-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BeltranD, HickmanJ, SoggeCD. Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds. Anal. PDE, 2020, 132403-433.

[2]

BourgainJ. Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal., 1991, 12147-187.

[3]

BourgainJ. $L^p$-estimates for oscillatory integrals in several variables. Geom. Funct. Anal., 1991, 14321-374.

[4]

BourgainJ, DemeterC. The proof of the $l^2$ decoupling conjecture. Ann. of Math., 2015, 1821351-389.

[5]

BourgainJ, GuthL. Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal., 2011, 2161239-1295.

[6]

CarberyA. Restriction implies Bochner–Riesz for paraboloids. Math. Proc. Cambridge Philos. Soc., 1992, 1113525-529.

[7]

Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Stud. Math. 44, 287–299 (1972)

[8]

ChristM. Weak type $(1,1)$ bounds for rough operators. Ann. Math. (2), 1988, 128119-42.

[9]

FeffermanC. Inequalities for strongly singular convolution operators. Acta Math., 1970, 124: 9-36.

[10]

FeffermanC. A note on spherical summation multipliers. Israel J. Math., 1973, 15: 44-52.

[11]

GuthL, HickmanJ, IliopoulouM. Sharp estimates for oscillatory integral operators via polynomial partitioning. Acta Math., 2019, 2232251-376.

[12]

Guillemin, V., Pollack, A.: Differential Topology. AMS Chelsea Publishing, Providence, RI (2010)

[13]

GuthL. A restriction estimate using polynomial partitioning. J. Amer. Math. Soc., 2016, 292371-413.

[14]

GuthL. Restriction estimates using polynomial partitioning II. Acta Math., 2018, 221181-142.

[15]

HickmanJ, RogersKM. Improved Fourier restriction estimates in higher dimensions. Camb. J. Math., 2019, 73219-282.

[16]

HickmanJ, RogersKM, ZhangR. Improved bounds for the Kakeya maximal conjecture in higher dimensions. Amer. J. Math., 2022, 14461511-1560.

[17]

Hickman, J., Zahl, J.: A note on Fourier restriction and nested polynomial Wolff axioms. J. Anal. Math. https://doi.org/10.1007/s11854-023-0289-9 (2023)

[18]

HörmanderL. Oscillatory integrals and multipliers on $FL^{p}$. Ark. Mat., 1973, 11: 1-11.

[19]

KatzNH, RogersKM. On the polynomial Wolff axioms. Geom. Funct. Anal., 2018, 2861706-1716.

[20]

LeeS. Improved bounds for Bochner–Riesz and maximal Bochner–Riesz operators. Duke Math. J., 2004, 1221205-232.

[21]

LeeS. Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces. J. Funct. Anal., 2006, 241156-98.

[22]

LeeS. Square function estimates for the Bochner–Riesz means. Anal. PDE, 2018, 1161535-1586.

[23]

RogersKM. A local smoothing estimate for the Schrödinger equation. Adv. Math., 2008, 21962105-2122.

[24]

SeegerA. Endpoint inequalities for Bochner–Riesz multipliers in the plane. Pacific J. Math., 1996, 1742543-553.

[25]

Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 4. Princeton University Press, Princeton, NJ (1993)

[26]

Stein, E.M., Shakarchi, R.: Functional Analysis: Introduction to Further Topics in Analysis. Princeton Lectures in Analysis, vol. 4. Princeton University Press, Princeton, NJ (2011)

[27]

TaoT. The weak-type endpoint Bochner–Riesz conjecture and related topics. Indiana Univ. Math. J., 1998, 4731097-1124.

[28]

TaoT. The Bochner–Riesz conjecture implies the restriction conjecture. Duke Math. J., 1999, 962363-375.

[29]

TaoT. A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal., 2003, 1361359-1384.

[30]

Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106. American Mathematical Society, Providence, RI (2006)

[31]

WangH. A restriction estimate in ${\mathbb{R} }^3$ using brooms. Duke Math. J., 2022, 17181749-1822.

[32]

WongkewR. Volumes of tubular neighbourhoods of real algebraic varieties. Pacific J. Math., 1993, 1591177-184.

[33]

WuS. On the Bochner–Riesz operator in ${\mathbb{R} }^3$. J. Anal. Math., 2023, 1492677-718.

[34]

ZahlJ. A discretized Severi-type theorem with applications to harmonic analysis. Geom. Funct. Anal., 2018, 2841131-1181.

[35]

ZahlJ. New Kakeya estimates using Gromov’s algebraic lemma. Adv. Math., 2021, 380. 107596

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

588

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/