Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles

Wen Huang , Jing Wang , Zhiren Wang , Qi Zhou

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) : 711 -765.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) :711 -765. DOI: 10.1007/s42543-023-00081-5
Original Article
research-article

Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles

Author information +
History +
PDF

Abstract

Sarnak’s Möbius disjointness conjecture states that Möbius function is disjoint to any zero entropy dynamics. We prove that Möbius disjointness conjecture holds for one-frequency analytic quasi-periodic cocycles which are almost reducible, which extends (Liu and Sarnak in Duke Math J 164(7):1353–1399, 2015; Wang in Invent Math 209:175–196, 2017) to the noncommutative case. The proof relies on quantitative version of almost reducibility.

Keywords

Möbius function / Quasi-periodic systems / Almost reducibility / 37E30 / 46L55

Cite this article

Download citation ▾
Wen Huang, Jing Wang, Zhiren Wang, Qi Zhou. Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles. Peking Mathematical Journal, 2025, 8(4): 711-765 DOI:10.1007/s42543-023-00081-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avila, A.: The absolutely continuous spectrum of the almost Mathieu operator. arXiv:0810.2965 (2008)

[2]

Avila, A.: Almost reducibility and absolute continuity I. arXiv:1006.0704 (2010)

[3]

Avila, A.: KAM, Lyapunov exponents, and the spectral dichotomy for typical one-frequency Schrödinger operators. arXiv:2307.11071v2 (2023)

[4]

Avila A. Global theory of one-frequency Schrödinger operators. Acta Math., 2015, 215: 1-54.

[5]

Avila A, Fayad B, Krikorian R. A KAM scheme for SL(2,R)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\rm SL(2,\mathbb{R} )$$\end{document} cocycles with Liouvillean frequencies. Geom. Funct. Anal., 2011, 21: 1001-1019.

[6]

Avila A, Jitomirskaya S. Almost localization and almost reducibility. J. Eur. Math. Soc., 2010, 12: 93-131.

[7]

Avila A, Jitomirskaya S. Hölder continuity of absolutely continuous spectral measures for one-frequency Schrödinger operators. Commun. Math. Phys., 2011, 301: 563-581.

[8]

Avila A, Jitomirskaya S, Marx CA. Spectral theory of extended Harper’s model and a question by Erdős and Szekeres. Invent. Math., 2017, 210: 283-339.

[9]

Avila A, Khanin K, Leguil M. Invariant graphs and spectral type of Schrödinger operators. Pure Appl. Funct. Anal., 2020, 5: 1257-1277. DOI:

[10]

Avila, A., Last, Y., Shamis, M., Zhou, Q.: On the abominable properties of the almost Mathieu operator with well approximated frequencies. arXiv:2110.07974v2 (To appear in Duke Math. J.)

[11]

Avila A, You J, Zhou Q. Sharp phase transitions for the almost Mathieu operator. Duke Math. J., 2017, 166: 2697-2718.

[12]

Avila, A., You, J., Zhou, Q.: Dry Ten Martini Problem in the non-critical case. arXiv:2306.16254 (2023)

[13]

Bjerklöv K, Jäger T. Rotation numbers for quasiperiodically forced circle maps—mode-locking vs strict monotonicity. J. Am. Math. Soc., 2009, 22: 353-362.

[14]

Bourgain J, Jitomirskaya S. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys., 2002, 108: 1203-1218.

[15]

Davenport H. On some infinite series involving arithmetical functions (II). Q. J. Math., 1937, 8: 313-320.

[16]

De Faveri A. Möbius disjointness for C1+ε\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^{1 + \varepsilon }$$\end{document} skew products. Int. Math. Res. Not., 2022, 2022(4): 2513-2531.

[17]

Eliasson LH. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys., 1992, 146: 447-482.

[18]

Eliasson, L.H.: Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, pp. 679–705. Amer. Math. Soc., Providence (2001)

[19]

Ferenczi, S., Kułaga-Przymus, J., Lemańczyk, M.: Sarnak’s conjecture: what’s new. In: Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., vol. 2213, pp. 163–235. Springer, Cham (2018)

[20]

Ge L, You J. Arithmetic version of Anderson localization via reducibility. Geom. Funct. Anal., 2020, 30: 1370-1401.

[21]

Herman M-R. Construction d’un difféomorphisme minimal d’entropie topologique non nulle. Ergod. Theory Dyn. Syst., 1981, 1: 65-76.

[22]

Herman M-R. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caract ère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Commen. Math. Helv., 1983, 58: 453-502.

[23]

Hou X, You J. Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math., 2012, 190: 209-260.

[24]

Huang W, Wang Z, Ye X. Measure complexity and Möbius disjointness. Adv. Math., 2019, 347: 827-858.

[25]

Huang W, Yi Y. Almost periodically forced circle flows. J. Funct. Anal., 2009, 257: 832-902.

[26]

Iwaniec, H., Kowalski, E.: Analytic Number Theory. Amer. Math. Soc. Colloq. Publ., vol. 53. Amer. Math. Soc., Providence (2004)

[27]

Jäger, T.: The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations. Mem. Am. Math. Soc. 201(945), vi+106 pp. (2009)

[28]

Johnson R, Moser J. The rotation number for almost periodic potentials. Commun. Math. Phys., 1982, 84: 403-438.

[29]

Kanigowski A, Lemańczyk M, Radziwiłł M. Rigidity in dynamics and Möbius disjointness. Fund. Math., 2021, 255: 309-336.

[30]

Krikorian R, Wang J, You J, Zhou Q. Linearization of quasiperiodically forced circle flows beyond Brjuno condition. Commun. Math. Phys., 2018, 358: 81-100.

[31]

Kułaga-Przymus J, Lemańczyk M. The Möbius function and continuous extensions of rotations. Monatsh. Math., 2015, 178: 553-582.

[32]

Last, Y.: Spectral theory of Sturm–Liouville operators on infinite intervals: a review of recent developments. In: Sturm–Liouville Theory, pp. 99–120. Birkhäuser, Basel (2005)

[33]

Leguil, M., You, J., Zhao, Z., Zhou, Q.: Asymptotics of spectral gaps of quasi-periodic Schrödinger operators. arXiv:1712.04700 (2017)

[34]

Liu J, Sarnak P. The Möbius function and distal flows. Duke Math. J., 2015, 164(7): 1353-1399.

[35]

Marx CA, Jitomirskaya S. Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergod. Theory Dyn. Syst., 2017, 37: 2353-2393.

[36]

Matomäki K, Radziwiłł M, Tao T. An averaged form of Chowla’s conjecture. Algebra Number Theory, 2015, 9: 2167-2196.

[37]

Puig J. A nonperturbative Eliasson’s reducibility theorem. Nonlinearity, 2006, 19: 355-376.

[38]

Sarnak, P.: Three Lectures on the Möbius Function, Randomness and Dynamics. Institute for Advanced Study, Princeton (2011)

[39]

Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M. Quantised Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 1982, 49: 405-408.

[40]

Wang J, Jäger T. Abundance of mode-locking for quasiperiodically forced circle maps. Commun. Math. Phys., 2017, 353: 1-36.

[41]

Wang J, Zhou Q, Jäger T. Genericity of mode-locking for quasiperiodically forced circle maps. Adv. Math., 2019, 348: 353-377.

[42]

Wang Z. Möbius disjointness for analytic skew products. Invent. Math., 2017, 209: 175-196.

[43]

Yoccoz, J.-C.: Some questions and remarks about SL(2,R)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm SL}(2,\mathbb{R})$$\end{document} cocycles. In: Modern Dynamical Systems and Applications, pp. 447–458. Cambridge University Press, Cambridge (2004)

[44]

You J, Zhou Q. Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications. Commun. Math. Phys., 2013, 323: 975-1005.

[45]

Zhang Z. On topological genericity of the mode-locking phenomenon. Math. Ann., 2020, 376: 707-728.

Funding

National Key Research and Development Program of China(2021YFA 1001600)

Tian Yuan Mathematical Foundation(11826102)

National Natural Science Foundation of China(12090012)

National Natural Science Foundation of China(12071232)

Outstanding Youth Foundation of Jiangsu Province of China(BK20200074)

Qinglan Project of Jiangsu Province of China

National Science Foundation(DMS-1753042)

Science Fund for Distinguished Young Scholars of Tianjin(19JCJQJC61300)

Nankai Zhide Foundation

RIGHTS & PERMISSIONS

Peking University

PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

/