Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles
Wen Huang , Jing Wang , Zhiren Wang , Qi Zhou
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) : 711 -765.
Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles
Sarnak’s Möbius disjointness conjecture states that Möbius function is disjoint to any zero entropy dynamics. We prove that Möbius disjointness conjecture holds for one-frequency analytic quasi-periodic cocycles which are almost reducible, which extends (Liu and Sarnak in Duke Math J 164(7):1353–1399, 2015; Wang in Invent Math 209:175–196, 2017) to the noncommutative case. The proof relies on quantitative version of almost reducibility.
Möbius function / Quasi-periodic systems / Almost reducibility / 37E30 / 46L55
| [1] |
Avila, A.: The absolutely continuous spectrum of the almost Mathieu operator. arXiv:0810.2965 (2008) |
| [2] |
Avila, A.: Almost reducibility and absolute continuity I. arXiv:1006.0704 (2010) |
| [3] |
Avila, A.: KAM, Lyapunov exponents, and the spectral dichotomy for typical one-frequency Schrödinger operators. arXiv:2307.11071v2 (2023) |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Avila, A., Last, Y., Shamis, M., Zhou, Q.: On the abominable properties of the almost Mathieu operator with well approximated frequencies. arXiv:2110.07974v2 (To appear in Duke Math. J.) |
| [11] |
|
| [12] |
Avila, A., You, J., Zhou, Q.: Dry Ten Martini Problem in the non-critical case. arXiv:2306.16254 (2023) |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Eliasson, L.H.: Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, pp. 679–705. Amer. Math. Soc., Providence (2001) |
| [19] |
Ferenczi, S., Kułaga-Przymus, J., Lemańczyk, M.: Sarnak’s conjecture: what’s new. In: Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., vol. 2213, pp. 163–235. Springer, Cham (2018) |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Iwaniec, H., Kowalski, E.: Analytic Number Theory. Amer. Math. Soc. Colloq. Publ., vol. 53. Amer. Math. Soc., Providence (2004) |
| [27] |
Jäger, T.: The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations. Mem. Am. Math. Soc. 201(945), vi+106 pp. (2009) |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Last, Y.: Spectral theory of Sturm–Liouville operators on infinite intervals: a review of recent developments. In: Sturm–Liouville Theory, pp. 99–120. Birkhäuser, Basel (2005) |
| [33] |
Leguil, M., You, J., Zhao, Z., Zhou, Q.: Asymptotics of spectral gaps of quasi-periodic Schrödinger operators. arXiv:1712.04700 (2017) |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
Sarnak, P.: Three Lectures on the Möbius Function, Randomness and Dynamics. Institute for Advanced Study, Princeton (2011) |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Yoccoz, J.-C.: Some questions and remarks about SL(2,R)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\rm SL}(2,\mathbb{R})$$\end{document} cocycles. In: Modern Dynamical Systems and Applications, pp. 447–458. Cambridge University Press, Cambridge (2004) |
| [44] |
|
| [45] |
|
Peking University
/
| 〈 |
|
〉 |