Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles

Wen Huang , Jing Wang , Zhiren Wang , Qi Zhou

Peking Mathematical Journal ›› : 1 -55.

PDF
Peking Mathematical Journal ›› : 1 -55. DOI: 10.1007/s42543-023-00081-5
Original Article

Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles

Author information +
History +
PDF

Abstract

Sarnak’s Möbius disjointness conjecture states that Möbius function is disjoint to any zero entropy dynamics. We prove that Möbius disjointness conjecture holds for one-frequency analytic quasi-periodic cocycles which are almost reducible, which extends (Liu and Sarnak in Duke Math J 164(7):1353–1399, 2015; Wang in Invent Math 209:175–196, 2017) to the noncommutative case. The proof relies on quantitative version of almost reducibility.

Cite this article

Download citation ▾
Wen Huang, Jing Wang, Zhiren Wang, Qi Zhou. Quantitative Almost Reducibility and Möbius Disjointness for Analytic Quasiperiodic Schrödinger Cocycles. Peking Mathematical Journal 1-55 DOI:10.1007/s42543-023-00081-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Key Research and Development Program of China(2021YFA 1001600)

Tian Yuan Mathematical Foundation(11826102)

National Natural Science Foundation of China(12090012)

National Natural Science Foundation of China(12071232)

Outstanding Youth Foundation of Jiangsu Province of China(BK20200074)

Qinglan Project of Jiangsu Province of China

National Science Foundation(DMS-1753042)

Science Fund for Distinguished Young Scholars of Tianjin(19JCJQJC61300)

Nankai Zhide Foundation

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/