Noncommutative Gröbner Bases and Ext Groups

Weinan Lin

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 481 -501.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 481 -501. DOI: 10.1007/s42543-023-00080-6
Original Article
research-article

Noncommutative Gröbner Bases and Ext Groups

Author information +
History +
PDF

Abstract

We consider a theory of noncommutative Gröbner bases on decreasingly filtered algebras whose associated graded algebras are commutative. We transfer many algorithms that use commutative Gröbner bases to this context. As a result, we have a very efficient way to compute Ext groups for a large class of graded algebras. This has many applications especially in algebraic topology.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Keywords

Noncommutative Gröbner Bases / Steenrod algebra / Adams spectral sequence / Homological algebra / 13P10 / 14F35 / 55S10

Cite this article

Download citation ▾
Weinan Lin. Noncommutative Gröbner Bases and Ext Groups. Peking Mathematical Journal, 2025, 8(3): 481-501 DOI:10.1007/s42543-023-00080-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamsJF. On the structure and applications of the Steenrod algebra. Comment. Math. Helv., 1958, 32: 180-214

[2]

ApelJ, LassnerW. An extension of Buchberger’s algorithm and calculations in enveloping fields of Lie algebras. J. Symb. Comput., 1988, 6(2–3): 361-370

[3]

Beauvais-Feisthauer, J., Chatham, H., Chua, D.: The $E_2$ page of the 2-primary Adams spectral sequence in a large range. Zenodo, https://doi.org/10.5281/zenodo.7339848 (2023)

[4]

BergmanGM. The diamond lemma for ring theory. Adv. Math., 1978, 29(2): 178-218

[5]

Bruner, R.R.: Calculation of large Ext modules. In: Computers in Geometry and Topology (Chicago, IL, 1986), Lecture Notes in Pure and Applied Mathematics, vol. 114, pp. 79–104. Dekker, New York (1989)

[6]

Bruner, R.R.: ${\rm Ext}$ in the nineties. In: Algebraic Topology (Oaxtepec, 1991), Contemporary Mathematics, vol. 146, pp. 71–90. Amer. Math. Soc., Providence, RI (1993)

[7]

Bruner, R.R., Rognes, J.: The cohomology of the mod 2 Steenrod algebra. arXiv:2109.13117v2 (2022)

[8]

Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal (Translated from the 1965 German original by Michael P. Abramson). J. Symb. Comput. 41(3–4), 475–511 (2006)

[9]

DuggerD, IsaksenDC. The motivic Adams spectral sequence. Geom. Topol., 2010, 14(2): 967-1014

[10]

KreuzerM, RobbianoLComputational Commutative Algebra 2, 2005, Berlin. Springer.

[11]

LiHNoncommutative Gröbner Bases and Filtered-Graded Transfer. Lecture Notes in Mathematics, 2002, Berlin. Springer. 1795

[12]

Lin, W.: SSeqCpp. https://github.com/WayneLin92/SSeqCpp (2023)

[13]

Lin, W.: Cohomology of the mod 2 Steenrod algebra (Version t261.0) [data set]. Zenodo, https://doi.org/10.5281/zenodo.7786290 (2023)

[14]

May, J.P.: The cohomology of restricted Lie algebras and of Hopf algebras: Application to the Steenrod algebra. Ph.D. Thesis, Princeton University, Princeton, NJ (1964)

[15]

MilnorJ. The Steenrod algebra and its dual. Ann. Math., 1958, 67: 150-171

[16]

Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci. 134(1), 131–173 (1994)

[17]

Nassau, C.: https://www.nullhomotopie.de (2011)

[18]

RavenelDCComplex Cobordism and Stable Homotopy Groups of Spheres. Pure and Applied Mathematics, 1986, Orlando, FL. Academic Press. 121

[19]

Wang, G.: Morestablestems. https://github.com/pouiyter/morestablestems (2021)

[20]

WangG. Computations of the Adams–Novikov $E_2$-term. Chin. Ann. Math. Ser. B, 2021, 42(4): 551-560

Funding

China Postdoctoral Science Foundation(2021TQ0015)

Fundamental Research Funds for the Central Universities

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/