Weight Polytopes and Energy Functionals of Toric Varieties

Yuji Sano

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) : 791 -808.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (4) :791 -808. DOI: 10.1007/s42543-023-00079-z
Original Article
research-article

Weight Polytopes and Energy Functionals of Toric Varieties

Author information +
History +
PDF

Abstract

We prove that the weight polytope of the Hurwitz form of a polarized smooth toric variety coincides with the convex hull of the characteristic vectors introduced in Ogusu and Sano (Characteristic vectors for the Hurwitz polytopes of toric varieties, preprint 2023) with respect to all regular triangulations of the momentum polytope. Our proof relies on the combination of the two slope formulas of K-energy (Boucksom et al. in J Eur Math Soc 21(9):2905–2944, 2019; Paul in Ann Math 175(1):255–296, 2012) in the toric setting.

Keywords

Hurwitz polytope / Chow polytope / K-energy / Toric variety / 53C55 / 14M15 / 14M25

Cite this article

Download citation ▾
Yuji Sano. Weight Polytopes and Energy Functionals of Toric Varieties. Peking Mathematical Journal, 2025, 8(4): 791-808 DOI:10.1007/s42543-023-00079-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boucksom S, Hisamoto T, Jonsson M. Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble), 2017, 67(2): 743-841.

[2]

Boucksom S, Hisamoto T, Jonsson M. Uniform K-stability and asymptotics of energy functionals in Kähler geometry. J. Eur. Math. Soc., 2019, 21(9): 2905-2944.

[3]

Delcroix, T.: Uniform K-stability of polarized spherical varieties. Épijournal Géom. Algébrique 7, 9, 27 pp. (2023)

[4]

Donaldson SK. Scalar curvature and stability of toric varieties. J. Differ. Geom., 2002, 62(2): 289-349.

[5]

Gelfand IM, Kapranov MM, Zelevinsky AV. Discriminants, 1994, Boston. Resultants and Multidimensional Determinants. Birkhäuser Boston.

[6]

Hisamoto, T.: Stability and coercivity for toric polarizations. arXiv:1610.07998v3 (2020)

[7]

Kapranov MM, Sturmfels B, Zelevinsky AV. Chow polytopes and general resultants. Duke Math. J., 1992, 67(1): 189-218.

[8]

Kohn K. Coisotropic hypersurfaces in Grassmannians. J. Symbol. Comput., 2021, 103: 157-177.

[9]

Li Y, Tian G, Zhu X. Uniform K-stability modulo a subgroup. Sb. Math, 2021, 212(3): 332-350.

[10]

Li, Y., Tian, G., Zhu, X.: Singular Kähler–Einstein metrics on Q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{Q} $$\end{document}-Fano compactifications of Lie groups. Math. Eng. 5(2), 028, 43 pp. (2023)

[11]

Mabuchi T. K-energy maps integrating Futaki invariants. Tohoku Math. J., 1986, 38(4): 575-593.

[12]

Ogusu, R., Sano, Y.: Characteristic vectors for the Hurwitz polytopes of toric varieties. arXiv:2302.09792 (2023)

[13]

Paul ST. Geometric analysis of Chow Mumford stability. Adv. Math., 2004, 182(2): 333-356.

[14]

Paul ST. Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. Math., 2012, 175(1): 255-296.

[15]

Paul, S.T.: Mahler measures, stable pairs, and the global coercive estimate for the Mabuchi functional. arXiv:2105.01240v1 (2021)

[16]

Phong DH, Sturm J. Stability, energy functionals, and Kähler–Einstein metrics. Commun. Anal. Geom., 2003, 11(3): 565-597.

[17]

Rambau, J.: TOPCOM: Triangulations of Point Configurations and Oriented Matroids. In: Mathematical Software, pp. 330–340. World Sci. Publ., River Edge, NJ (2002)

[18]

Sturmfels B. The Hurwitz form of a projective variety. J. Symbol. Comput., 2017, 79(part 1): 186-196.

[19]

Tian, G.: The K-energy on hypersurfaces and stability. Commun. Anal. Geom. 2(2), 239–265 (1994)

[20]

Tian, G.: K-stability implies CM-stability. In: Geometry, Analysis and Probability. Program. Math., vol. 310, pp. 245–261. Birkhäuser/Springer, Cham (2017)

[21]

Tian, G.: On uniform K-stability of pairs. arXiv:1812.05746v2 (2019)

[22]

Zhang S. Heights and reductions of semi-stable varieties. Compos. Math., 1996, 104(1): 77-105. DOI:

Funding

Japan Society for the Promotion of Science(22K03325)

Fukuoka University(225001-000)

RIGHTS & PERMISSIONS

Peking University

PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

/