PDF
Abstract
We prove some basic properties of the relative Nakayama–Zariski decomposition. We apply them to the study of lc generalized pairs. We prove the existence of log minimal models or Mori fiber spaces for (relative) lc generalized pairs polarized by an ample divisor. This extends a result of Hashizume–Hu to generalized pairs. We also show that, for any lc generalized pair \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(X,B+A,\textbf{M})/Z$$\end{document}
such that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K_X+B+A+\textbf{M}_X\sim _{{\mathbb {R}},Z}0$$\end{document}
and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B\ge 0,A\ge 0$$\end{document}
, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(X,B,\textbf{M})/Z$$\end{document}
has either a log minimal model or a Mori fiber space. This is an analogue of a result of Birkar/Hacon–Xu and Hashizume in the category of generalized pairs, and is later shown to be crucial to the proof of the existence of generalized lc flips in full generality.
Keywords
Generalized pairs
/
Nakayama–Zariski decomposition
/
Minimal models
Cite this article
Download citation ▾
Jihao Liu, Lingyao Xie.
Relative Nakayama–Zariski Decomposition and Minimal Models of Generalized Pairs.
Peking Mathematical Journal, 2023, 8(2): 299-349 DOI:10.1007/s42543-023-00076-2
| [1] |
AbramovichD, KaruK. Weak semistable reduction in characteristic 0. Invent. Math., 2000, 1392241-273.
|
| [2] |
BirkarC. Existence of log canonical flips and a special LMMP. Publ. Math. IHES, 2012, 115: 325-368.
|
| [3] |
BirkarC. Anti-pluricanonical systems on Fano varieties. Ann. Math. (2), 2019, 1902345-463.
|
| [4] |
BirkarC. Singularities of linear systems and boundedness of Fano varieties. Ann. Math. (2), 2021, 1932347-405.
|
| [5] |
BirkarC. Generalised pairs in birational geometry. EMS Surv. Math. Sci., 2021, 81–25-24.
|
| [6] |
BirkarC, CasciniP, HaconCD, McKernanJ. Existence of minimal models for varieties of log general type. J. Am. Math. Soc., 2010, 232405-468.
|
| [7] |
Birkar, C., Hacon, C.D.: Variations of generalised pairs. arXiv:2204.10456 (2022)
|
| [8] |
BirkarC, ZhangD-Q. Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Publ. Math. IHES, 2016, 123: 283-331.
|
| [9] |
Chen, G.: Boundedness of n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document}-complements for generalized pairs. arXiv:2003.04237v2 (2020)
|
| [10] |
Choi, R.: The geography of log models and its applications, Ph.D. Thesis, Johns Hopkins University (2008)
|
| [11] |
Filipazzi, S., Svaldi, R.: On the connectedness principle and dual complexes for generalized pairs. Forum Math. Sigma 11, e33 (2023)
|
| [12] |
Fujino, O.: Special termination and reduction to pl flips. In: Flips for 3-folds and 4-folds. Oxford Lecture Ser. Math. Appl., vol. 35, pp. 63–75. Oxford Univ. Press, Oxford (2007)
|
| [13] |
Fujino, O.: Corrigendum to “On subadditivity of the logarithmic Kodaira dimension”. J. Math. Soc. Jpn. 72(4), 1181–1187 (2020)
|
| [14] |
FujinoO, MoriS. A canonical bundle formula. J. Differ. Geom., 2000, 561167-188.
|
| [15] |
Hacon, C.D., Liu, J.: Existence of generalized lc flips. arXiv:2105.13590 (2021)
|
| [16] |
Hacon, C.D., McKernan, J., Xu, C.: Boundedness of moduli of varieties of general type. J. Eur. Math. Soc. 20(4), 865–901 (2018)
|
| [17] |
HaconCD, XuC. Existence of log canonical closures. Invent. Math., 2013, 1921161-195.
|
| [18] |
HanJ, LiZ. Weak Zariski decompositions and log terminal models for generalized pairs. Math. Z., 2022, 3022707-741.
|
| [19] |
Han, J., Liu, J., Shokurov, V.V.: ACC for minimal log discrepancies of exceptional singularities. arXiv:1903.04338v2 (2020)
|
| [20] |
HanJ, LiuW. On numerical nonvanishing for generalized log canonical pairs. Doc. Math., 2020, 25: 93-123.
|
| [21] |
HanJ, LiuW. On a generalized canonical bundle formula for generically finite morphisms. Ann. Inst. Fourier (Grenoble), 2021, 7152047-2077.
|
| [22] |
HashizumeK. Minimal model theory for relatively trivial log canonical pairs. Ann. Inst. Fourier (Grenoble), 2018, 6852069-2107.
|
| [23] |
Hashizume, K.: Remarks on special kinds of the relative log minimal model program. Manuscr. Math. 160(3–4), 285–314 (2019)
|
| [24] |
Hashizume, K.: Non-vanishing theorem for generalized log canonical pairs with a polarization. Sel. Math. New Ser. 28(4), 77 (2022)
|
| [25] |
Hashizume, K.: Iitaka fibrations for dlt pairs polarized by a nef and log big divisor. Forum Math. Sigma 10, e85 (2022)
|
| [26] |
Hashizume, K.: Finiteness of log abundant log canonical pairs in log minimal model program with scaling. arXiv:2005.12253 (To appear in Mich. Math. J.)
|
| [27] |
HashizumeK, HuZ. On minimal model theory for log abundant lc pairs. J. Reine Angew. Math., 2020, 767: 109-159.
|
| [28] |
Hu, Z.: Log abundance of the moduli b-divisors for lc-trivial fibrations. arXiv:2003.14379v3 (2021)
|
| [29] |
Kawamata, Y.: Subadjunction of log canonical divisors, II. Am. J. Math. 120(5), 893–899 (1998)
|
| [30] |
Kawamata, Y.: Variation of mixed Hodge structures and the positivity for algebraic fiber spaces. In: Algebraic Geometry in East Asia–Taipei 2011, Adv. Stud. Pure Math., vol. 65, pp. 27–57. Math. Soc. Jpn., Tokyo (2015)
|
| [31] |
Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Math., vol. 134. Cambridge University Press, Cambridge (1998)
|
| [32] |
Lazić, V., Moraga, J., Tsakanikas, N.: Special termination for log canonical pairs. arXiv:2007.06458v2 (2023)
|
| [33] |
LazićV, TsakanikasN. On the existence of minimal models for log canonical pairs. Publ. Res. Inst. Math. Sci., 2022, 582311-339.
|
| [34] |
Lazić, V., Tsakanikas, N.: Special MMP for log canonical generalised pairs (with an appendix joint with Xiaowei Jiang). Sel. Math. New Ser. 28(5), 89 (2022)
|
| [35] |
LesieutreJ. A pathology of asymptotic multiplicity in the relative setting. Math. Res. Lett., 2016, 2351433-1451.
|
| [36] |
Liu, J., Xie, L.: Semi-ampleness of NQC generalized log canonical pairs. Adv. Math. 427, 109126 (2023)
|
| [37] |
Nakayama, N.: Zariski-decomposition and Abundance. MSJ Memoirs, vol. 14. Math. Soc. Jpn., Tokyo (2004)
|
| [38] |
Tsakanikas, N., Xie, L.: Remarks on the existence of minimal models of log canonical generalized pairs. arXiv:2301.09186v1 (2023)
|
| [39] |
Xie, L.: Contraction theorem for generalized pairs. arXiv:2211.10800 (2022)
|
Funding
National Science Foundation(DMS-1801851)
Simons Foundation(256202)
RIGHTS & PERMISSIONS
Peking University