PDF
Abstract
We initiate an approach to simultaneously treat numerators and denominators of Green’s functions arising from quasi-periodic Schrödinger operators, which in particular allows us to study completely resonant phases of the almost Mathieu operator. Let $ (H_{\lambda ,\alpha ,\theta }u) (n)=u(n+1)+u(n-1)+ 2\lambda \cos 2\pi (\theta +n\alpha )u(n)$ be the almost Mathieu operator on $\ell ^2({\mathbb {Z}})$, where $\lambda , \alpha , \theta \in {\mathbb {R}}$. Let
$\begin{aligned} \beta (\alpha )=\limsup _{k\rightarrow \infty }-\frac{\ln \Vert k\alpha \Vert _{{\mathbb {R}}/{\mathbb {Z}}}}{|k|}. \end{aligned}$
We prove that for any
$\theta $ with
$2\theta \in \alpha {\mathbb {Z}}+{\mathbb {Z}}$,
$H_{\lambda ,\alpha ,\theta }$ satisfies Anderson localization if
$|\lambda |>e^{2\beta (\alpha )}$. This confirms a conjecture of Avila and Jitomirskaya (Ann Math (2) 170(1):303–342, 2009) and a particular case of the second spectral transition line conjecture of Jitomirskaya (XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, pp. 373–382, 1995).
Keywords
Almost Mathieu operators
/
Small denominators
/
Large numerators
/
Completely resonant phase
/
Second spectral transition line
/
Primary 47A10
/
Secondary 81Q10
/
47B39
Cite this article
Download citation ▾
Wencai Liu.
Small Denominators and Large Numerators of Quasiperiodic Schrödinger Operators.
Peking Mathematical Journal, 2025, 8(3): 503-532 DOI:10.1007/s42543-023-00075-3
| [1] |
Avila, A.: The absolutely continuous spectrum of the almost Mathieu operator. arXiv:0810.2965 (2008)
|
| [2] |
AvilaA. Global theory of one-frequency Schrödinger operators. Acta Math., 2015, 215(1): 1-54
|
| [3] |
AvilaA, DamanikD. Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling. Invent. Math., 2008, 172(2): 439-453
|
| [4] |
AvilaA, FayadB, KrikorianR. A KAM scheme for ${{\rm SL}}(2,{\mathbb{R}})$ cocycles with Liouvillean frequencies. Geom. Funct. Anal., 2011, 21(5): 1001-1019
|
| [5] |
AvilaA, JitomirskayaS. The Ten Martini problem. Ann. Math. (2), 2009, 170(1): 303-342
|
| [6] |
AvilaA, JitomirskayaS. Almost localization and almost reducibility. J. Eur. Math. Soc. (JEMS), 2010, 12(1): 93-131
|
| [7] |
AvilaA, JitomirskayaS, MarxCA. Spectral theory of extended Harper’s model and a question by Erdős and Szekeres. Invent. Math., 2017, 210(1): 283-339
|
| [8] |
AvilaA, YouJ, ZhouQ. Sharp phase transitions for the almost Mathieu operator. Duke Math. J., 2017, 166(14): 2697-2718
|
| [9] |
AvronJ, SimonB. Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. Am. Math. Soc. (N.S.), 1982, 6(1): 81-85
|
| [10] |
BerezanskiiJMExpansions in Eigenfunctions of Selfadjoint Operators, 1968, Providence. American Mathematical Society. 17
|
| [11] |
BourgainJGreen’s Function Estimates for Lattice Schrödinger Operators and Applications, 2005, Princeton. Princeton University Press. 158
|
| [12] |
BourgainJ, GoldsteinM. On nonperturbative localization with quasi-periodic potential. Ann. Math. (2), 2000, 152(3): 835-879
|
| [13] |
BourgainJ, GoldsteinM, SchlagW. Anderson localization for Schrödinger operators on ${\textbf{Z}}^2$ with quasi-periodic potential. Acta Math., 2002, 188(1): 41-86
|
| [14] |
BourgainJ, JitomirskayaS. Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math., 2002, 148(3): 453-463
|
| [15] |
BourgainJ, JitomirskayaS. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys., 2002, 108(5–6): 1203-1218
|
| [16] |
ChulaevskyVA, SinaĭYG. Anderson localization for the $1$-D discrete Schrödinger operator with two-frequency potential. Commun. Math. Phys., 1989, 125(1): 91-112
|
| [17] |
DinaburgEI, SinaĭJG. The one-dimensional Schrödinger equation with quasiperiodic potential. Funkcional. Anal. i Priložen., 1975, 9(4): 8-21
|
| [18] |
EliassonLH. Floquet solutions for the $1$-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys., 1992, 146(3): 447-482
|
| [19] |
EliassonLH. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math., 1997, 179(2): 153-196
|
| [20] |
FröhlichJ, SpencerT. Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys., 1983, 88(2): 151-184
|
| [21] |
FröhlichJ, SpencerT, WittwerP. Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys., 1990, 132(1): 5-25
|
| [22] |
GeL, YouJ. Arithmetic version of Anderson localization via reducibility. Geom. Funct. Anal., 2020, 30(5): 1370-1401
|
| [23] |
GeL, YouJ, ZhaoX. The arithmetic version of the frequency transition conjecture: new proof and generalization. Peking Math. J., 2022, 5(2): 349-364
|
| [24] |
GoldsteinM, SchlagW. Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal., 2008, 18(3): 755-869
|
| [25] |
GordonAY. The point spectrum of the one-dimensional Schrödinger operator. Uspekhi Mat. Nauk, 1976, 31(4): 257-258
|
| [26] |
GordonAY, JitomirskayaS, LastY, SimonB. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math., 1997, 178(2): 169-183
|
| [27] |
Han, R., Jitomirskaya, S., Yang, F.: Anti-resonances and sharp analysis of Maryland localization for all parameters. arXiv:2205.04021 (2022)
|
| [28] |
HouX, YouJ. Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math., 2012, 190(1): 209-260
|
| [29] |
Jitomirskaya, S.: Almost everything about the almost Mathieu operator. II. In: XIth International Congress of Mathematical Physics (Paris, 1994), pp. 373–382. Int. Press, Cambridge (1995)
|
| [30] |
Jitomirskaya, S.: Ergodic Schrödinger operators (on one foot). In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos. Pure Math., vol. 76, Part 2, pp. 613–647. Amer. Math. Soc., Providence (2007)
|
| [31] |
Jitomirskaya, S.: Critical phenomena, arithmetic phase transitions, and universality: some recent results on the almost Mathieu operator. In: Current Developments in Mathematics 2019, pp. 1–42. Int. Press, Boston (2021)
|
| [32] |
JitomirskayaS. On point spectrum of critical almost Mathieu operators. Adv. Math., 2021, 392107997
|
| [33] |
JitomirskayaS, KosloverDA, SchulteisMS. Localization for a family of one-dimensional quasiperiodic operators of magnetic origin. Ann. Henri Poincaré, 2005, 6(1): 103-124
|
| [34] |
JitomirskayaS, LiuW. Arithmetic spectral transitions for the Maryland model. Commun. Pure Appl. Math., 2017, 70(6): 1025-1051
|
| [35] |
JitomirskayaS, LiuW. Universal hierarchical structure of quasiperiodic eigenfunctions. Ann. Math. (2), 2018, 187(3): 721-776
|
| [36] |
Jitomirskaya, S., Liu, W.: Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase. arXiv:1802.00781 (To appear in J. Eur. Math. Soc. (JEMS))
|
| [37] |
Jitomirskaya, S., Liu, W., Zhang, S.: Arithmetic spectral transitions: a competition between hyperbolicity and the arithmetics of small denominators. In: Harmonic Analysis and Applications, IAS/Park City Math. Ser., vol. 27, pp. 35–71. Amer. Math. Soc., Providence (2020)
|
| [38] |
JitomirskayaS, SimonB. Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators. Commun. Math. Phys., 1994, 165(1): 201-205
|
| [39] |
JitomirskayaS, YangF. Pure point spectrum for the Maryland model: a constructive proof. Ergod. Theory Dyn. Syst., 2021, 41(1): 283-294
|
| [40] |
JitomirskayaSY. Anderson localization for the almost Mathieu equation: a nonperturbative proof. Commun. Math. Phys., 1994, 165(1): 49-57
|
| [41] |
JitomirskayaSY. Metal-insulator transition for the almost Mathieu operator. Ann. Math. (2), 1999, 150(3): 1159-1175
|
| [42] |
Kotani, S.: Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Stochastic Analysis (Katata/Kyoto, 1982), North-Holland Math. Library, vol. 32, pp. 225–247. North-Holland, Amsterdam (1984)
|
| [43] |
LastY, SimonB. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math., 1999, 135(2): 329-367
|
| [44] |
LiuW. Almost Mathieu operators with completely resonant phases. Ergod. Theory Dyn. Syst., 2020, 40(7): 1875-1893
|
| [45] |
Liu, W.: Distributions of resonances of supercritical quasi-periodic operators. Int. Math. Res. Not. IMRN. https://doi.org/10.1093/imrn/rnad006 (2023)
|
| [46] |
LiuW, YuanX. Anderson localization for the completely resonant phases. J. Funct. Anal., 2015, 268(3): 732-747
|
| [47] |
LiuW, YuanX. Spectral gaps of almost Mathieu operators in the exponential regime. J. Fractal Geom., 2015, 2(1): 1-51
|
| [48] |
LiuW, YuanX. Anderson localization for the almost Mathieu operator in the exponential regime. J. Spectr. Theory, 2015, 5(1): 89-112
|
| [49] |
MarxCA, JitomirskayaS. Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergod. Theory Dyn. Syst., 2017, 37(8): 2353-2393
|
| [50] |
PuigJ. Cantor spectrum for the almost Mathieu operator. Commun. Math. Phys., 2004, 244(2): 297-309
|
| [51] |
SchlagW. An introduction to multiscale techniques in the theory of Anderson localization, Part I. Nonlinear Anal., 2022, 220112869
|
| [52] |
SimonB. Almost periodic Schrödinger operators. IV. The Maryland model. Ann. Phys., 1985, 159(1): 157-183
|
| [53] |
SinaĭYG. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys., 1987, 46(5–6): 861-909
|
| [54] |
You, J.: Quantitative almost reducibility and its applications. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, vol. III, Invited Lectures, pp. 2113–2135. World Sci. Publ., Hackensack (2018)
|
Funding
Division of Mathematical Sciences(2000345)
RIGHTS & PERMISSIONS
Peking University