Small Denominators and Large Numerators of Quasiperiodic Schrödinger Operators
Wencai Liu
Small Denominators and Large Numerators of Quasiperiodic Schrödinger Operators
We initiate an approach to simultaneously treat numerators and denominators of Green’s functions arising from quasi-periodic Schrödinger operators, which in particular allows us to study completely resonant phases of the almost Mathieu operator. Let $ (H_{\lambda ,\alpha ,\theta }u) (n)=u(n+1)+u(n-1)+ 2\lambda \cos 2\pi (\theta +n\alpha )u(n)$ be the almost Mathieu operator on $\ell ^2({\mathbb {Z}})$, where $\lambda , \alpha , \theta \in {\mathbb {R}}$. Let $\begin{aligned} \beta (\alpha )=\limsup _{k\rightarrow \infty }-\frac{\ln \Vert k\alpha \Vert _{{\mathbb {R}}/{\mathbb {Z}}}}{|k|}. \end{aligned}$ We prove that for any $\theta $ with $2\theta \in \alpha {\mathbb {Z}}+{\mathbb {Z}}$, $H_{\lambda ,\alpha ,\theta }$ satisfies Anderson localization if $|\lambda |>e^{2\beta (\alpha )}$. This confirms a conjecture of Avila and Jitomirskaya (Ann Math (2) 170(1):303–342, 2009) and a particular case of the second spectral transition line conjecture of Jitomirskaya (XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, pp. 373–382, 1995).
/
〈 |
|
〉 |