Twisted Linear Periods and a New Relative Trace Formula

Hang Xue , Wei Zhang

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 533 -600.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 533 -600. DOI: 10.1007/s42543-023-00073-5
Original Article
research-article

Twisted Linear Periods and a New Relative Trace Formula

Author information +
History +
PDF

Abstract

We study the linear periods on ${{\,\textrm{GL}\,}}_{2n}$ twisted by a character using a new relative trace formula. We establish the relative fundamental lemma and the transfer of orbital integrals. Together with the spectral isolation technique of Beuzart-Plessis–Liu–Zhang–Zhu, we are able to compare the elliptic part of the relative trace formulae and to obtain new results generalizing Waldspurger’s theorem in the $n=1$ case.

Keywords

Linear periods / Relative trace formulae / Fundamental lemma / Smooth matching / 11F70

Cite this article

Download citation ▾
Hang Xue, Wei Zhang. Twisted Linear Periods and a New Relative Trace Formula. Peking Mathematical Journal, 2025, 8(3): 533-600 DOI:10.1007/s42543-023-00073-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aizenbud, A., Gourevitch, D.: Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet–Rallis’s theorem. Duke Math. J. 149(3), 509–567 (2009)

[2]

ArthurJ, ClozelLSimple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, 1989, Princeton. Princeton University Press. 120

[3]

Beuzart-PlessisR. On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad. Invent. Math., 2018, 214(1): 437-521

[4]

Beuzart-PlessisR, LiuY, ZhangW, ZhuX. Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture. Ann. Math. (2), 2021, 194(2): 519-584

[5]

ChenF, SunB. Uniqueness of twisted linear periods and twisted Shalika periods. Sci. China Math., 2020, 63(1): 1-22

[6]

FeigonB, MartinK, WhitehouseD. Periods and nonvanishing of central L-values for GL(2n). Isr. J. Math., 2018, 225(1): 223-266

[7]

FriedbergS, JacquetH. Linear periods. J. Reine Angew. Math., 1993, 443: 91-139

[8]

GetzJR, WambachE. Twisted relative trace formulae with a view towards unitary groups. Am. J. Math., 2014, 136(1): 1-58

[9]

GuoJ. On a generalization of a result of Waldspurger. Can. J. Math., 1996, 48(1): 105-142

[10]

Guo, J.: Spherical characters on certain p-adic symmetric spaces, MPIM preprint 1998(24). https://archive.mpim-bonn.mpg.de/id/eprint/525/ (1998)

[11]

Jacquet, H.: Sur un résultat de Waldspurger. Ann. Sci. École Norm. Sup. (4) 19(2), 185–229 (1986)

[12]

Jacquet, H.: Sur un résultat de Waldspurger. II. Compos. Math. 63(3), 315–389 (1987)

[13]

JacquetH, RallisS. Uniqueness of linear periods. Compos. Math., 1996, 102(1): 65-123

[14]

Jacquet, H., Shalika, J.: Exterior square L-functions. In: Automorphic Forms, Shimura Varieties, and $L$-functions, vol. II (Ann Arbor, MI, 1988), Perspect. Math., vol. 11, pp. 143–226. Academic Press, Boston (1990)

[15]

KableAC. Asai $L$-functions and Jacquet’s conjecture. Am. J. Math., 2004, 126(4): 789-820

[16]

KottwitzRE. Orbital integrals on ${\text{GL}}_{3}$. Am. J. Math., 1980, 102(2): 327-384

[17]

Kottwitz, R.E.: Harmonic analysis on reductive $p$-adic groups and Lie algebras. In: Harmonic Analysis, The Trace Formula, and Shimura Varieties, Clay Math. Proc., vol. 4, pp. 393–522. American Mathematical Society, Providence (2005)

[18]

Lapid, E., Mao, Z.: On a new functional equation for local integrals. In: Automorphic Forms and Related Geometry: Assessing the Legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, pp. 261–294. American Mathematical Society, Providence (2014)

[19]

LiH. An infinitesimal variant of the Guo–Jacquet trace formula. I: the case of $(GL_{2n, D}, GL_{n, D}\times GL_{n, D})$. Doc. Math., 2022, 27: 315-381

[20]

LiH. An infinitesimal variant of the Guo–Jacquet trace formula, II. Pac. J. Math., 2021, 315(1): 151-207

[21]

Lu, H.: Multiplicity one for the pair $({\rm GL}(n,D),{\rm GL}(n,E))$. arXiv:2105.10855 (To appear in Transform. Groups)

[22]

OffenO. On local root numbers and distinction. J. Reine Angew. Math., 2011, 652: 165-205

[23]

PrasadD, Takloo-BighashR. Bessel models for GSp(4). J. Reine Angew. Math., 2011, 655: 189-243

[24]

RaderC, RallisS. Spherical characters on $\mathfrak{p}$-adic symmetric spaces. Am. J. Math., 1996, 118(1): 91-178

[25]

Ramakrishnan, D.: A theorem on GL($n$) á lá Tchebotarev. arXiv:1806.08429 (2018)

[26]

Waldspurger, J.-L.: Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie. Compos. Math. 54(2), 173–242 (1985)

[27]

XueH. Epsilon dichotomy for linear models. Algebra Number Theory, 2021, 15(1): 173-215

[28]

XueH. Orbital integrals on ${\rm GL}_n \times {\rm GL}_n \backslash {\rm GL}_{2n}$. Can. J. Math., 2022, 74(3): 858-886

[29]

ZhangC. On the smooth transfer for Guo–Jacquet relative trace formulae. Compos. Math., 2015, 151(10): 1821-1877

[30]

ZhangC. On linear periods. Math. Z., 2015, 279(1–2): 61-84

[31]

ZhangW. Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups. Ann. Math. (2), 2014, 180(3): 971-1049

Funding

Division of Mathematical Sciences(1901862)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/