Twisted Linear Periods and a New Relative Trace Formula
Hang Xue , Wei Zhang
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 533 -600.
Twisted Linear Periods and a New Relative Trace Formula
We study the linear periods on
Linear periods / Relative trace formulae / Fundamental lemma / Smooth matching / 11F70
| [1] |
Aizenbud, A., Gourevitch, D.: Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet–Rallis’s theorem. Duke Math. J. 149(3), 509–567 (2009) |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Guo, J.: Spherical characters on certain p-adic symmetric spaces, MPIM preprint 1998(24). https://archive.mpim-bonn.mpg.de/id/eprint/525/ (1998) |
| [11] |
Jacquet, H.: Sur un résultat de Waldspurger. Ann. Sci. École Norm. Sup. (4) 19(2), 185–229 (1986) |
| [12] |
Jacquet, H.: Sur un résultat de Waldspurger. II. Compos. Math. 63(3), 315–389 (1987) |
| [13] |
|
| [14] |
Jacquet, H., Shalika, J.: Exterior square L-functions. In: Automorphic Forms, Shimura Varieties, and $L$-functions, vol. II (Ann Arbor, MI, 1988), Perspect. Math., vol. 11, pp. 143–226. Academic Press, Boston (1990) |
| [15] |
|
| [16] |
|
| [17] |
Kottwitz, R.E.: Harmonic analysis on reductive $p$-adic groups and Lie algebras. In: Harmonic Analysis, The Trace Formula, and Shimura Varieties, Clay Math. Proc., vol. 4, pp. 393–522. American Mathematical Society, Providence (2005) |
| [18] |
Lapid, E., Mao, Z.: On a new functional equation for local integrals. In: Automorphic Forms and Related Geometry: Assessing the Legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, pp. 261–294. American Mathematical Society, Providence (2014) |
| [19] |
|
| [20] |
|
| [21] |
Lu, H.: Multiplicity one for the pair $({\rm GL}(n,D),{\rm GL}(n,E))$. arXiv:2105.10855 (To appear in Transform. Groups) |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
Ramakrishnan, D.: A theorem on GL($n$) á lá Tchebotarev. arXiv:1806.08429 (2018) |
| [26] |
Waldspurger, J.-L.: Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie. Compos. Math. 54(2), 173–242 (1985) |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
Peking University
/
| 〈 |
|
〉 |