Dirac Geometry I: Commutative Algebra

Lars Hesselholt , Piotr Pstra̧gowski

Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 405 -480.

PDF
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 405 -480. DOI: 10.1007/s42543-023-00072-6
Original Article
research-article

Dirac Geometry I: Commutative Algebra

Author information +
History +
PDF

Abstract

The purpose of this paper and its sequel is to develop the geometry built from the commutative algebras that naturally appear as the homology of differential graded algebras and, more generally, as the homotopy of algebras in spectra. The commutative algebras in question are those in the symmetric monoidal category of graded abelian groups, and, being commutative, they form the affine building blocks of a geometry, as commutative rings form the affine building blocks of algebraic geometry. We name this geometry Dirac geometry, because the grading exhibits the hallmarks of spin in that it is a remnant of the internal structure encoded by anima, it distinguishes symmetric and anti-symmetric behavior, and the coherent cohomology of Dirac schemes and Dirac stacks, which we develop in the sequel, admits half-integer Serre twists. Thus, informally, Dirac geometry constitutes a “square root” of $\mathbb {G}_m$-equivariant algebraic geometry.

Keywords

Dirac rings / Dirac schemes / Evenness of étale maps / Primary 13A02 / Secondary 55Q10

Cite this article

Download citation ▾
Lars Hesselholt, Piotr Pstra̧gowski. Dirac Geometry I: Commutative Algebra. Peking Mathematical Journal, 2025, 8(3): 405-480 DOI:10.1007/s42543-023-00072-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Artin, M., Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Séminaire de Géometrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math., vol. 269. Springer, New York (1972)

[2]

BakerA, RichterB. Realizability of algebraic Galois extensions by strictly commutative ring spectra. Trans. Am. Math. Soc., 2007, 359(2): 827-857

[3]

BalmerP. Spectra, spectra, spectra—tensor triangular spectra versus Zariski spectra of endomorphism rings. Algebr. Geom. Topol., 2010, 10(3): 1521-1563

[4]

BensonD, IyengarSB, KrauseH. Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér., 2008, 41(4): 575-621

[5]

Bourbaki, N.: Algebra I. Chapters 1–3. Translated from the French. Reprint of the 1989 English translation, Elements of Mathematics. Springer, Berlin (1998)

[6]

Bruns, W., Herzog, J.: Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

[7]

Davies, J.: A graded Lazard’s theorem. https://drive.google.com/open?id=1a_3mnra5ewLRP1FVa9Yr1qxfUJ-rgQVQ (2019)

[8]

Demazure, M., Gabriel, P.: Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam (1970)

[9]

FrancisJ. The tangent complex and Hochschild cohomology of $\textbf{E} _n$-rings. Compos. Math., 2013, 149(3): 430-480

[10]

Friedlander, E.M., Mazur, B.: Filtrations on the homology of algebraic varieties. With an appendix by Daniel Quillen. Mem. Am. Math. Soc. 110(529), x+110 pp. (1994)

[11]

Gillam, W.D.: Localization of ringed spaces. arXiv:1103.2139 (2011)

[12]

Goerss, P., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured Ring Spectra. London Math. Soc. Lecture Note Ser., vol. 315, pp. 151–200. Cambridge University Press, Cambridge (2004)

[13]

Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. 4, 228 (1960)

[14]

HakimMTopos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete, 1972, Berlin. Springer. 64

[15]

Hesselholt, L., Pstrągowski, P.: Dirac geometry II: Coherent cohomology. arXiv:2303.13444 (2023)

[16]

JohnstonePTStone spaces, Cambridge Studies in Advanced Mathematics, 1982, Cambridge. Cambridge University Press. 3

[17]

Lurie, J.: Derived algebraic geometry I. https://people.math.harvard.edu/~lurie/papers/DAG-I.pdf

[18]

Lurie, J.: Higher algebra. https://www.math.ias.edu/~lurie/papers/HA.pdf

[19]

Lurie, J.: Spectral algebraic geometry, preliminary version

[20]

Lurie, J.: Spectral algebraic geometry. https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf

[21]

Lurie, J.: Higher Topos Theory, Ann. of Math. Studies, vol. 170. Princeton University Press, Princeton (2009)

[22]

MatsumuraHCommutative ring theory, Cambridge Studies in Advanced Mathematics, 1986, Cambridge. Cambridge University Press. 8

[23]

Patchkoria, I., Pstrągowski, P.: Adams spectral sequences and Franke’s algebraicity conjecture. arXiv:2110.03669 (2021)

[24]

Pstragowski, P.: Synthetic spectra and the cellular motivic category. Invent. Math. 232, 553–681 (2023)

[25]

Pstrągowski, P., VanKoughnett, P.: Abstract Goerss–Hopkins theory. Adv. Math. 395, 108098 (2022)

[26]

QuillenD. The spectrum of an equivariant cohomology ring: II. Ann. Math., 1971, 94: 573-602

[27]

Rognes, J.: Galois extensions of structured ring spectra. Stably dualizable groups. Mem. Am. Math. Soc. 192(898), viii+137 pp. (2008)

[28]

StoneMH. Topological representations of distributive lattices and Brouwerian logics. Časopis Pěst. Mat. Fys., 1938, 67(1): 1-25

[29]

The Stacks Project Authors, Stacks Project. https://stacks.math.columbia.edu (2018)

[30]

WeibelCA, GellerSC. Étale descent for Hochschild and cyclic homology. Comment. Math. Helv., 1991, 66(3): 368-388

Funding

Danmarks Grundforskningsfond(DNRF151)

Japan Society for the Promotion of Science(21K03161)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/