Dirac Geometry I: Commutative Algebra
Lars Hesselholt , Piotr Pstra̧gowski
Peking Mathematical Journal ›› 2025, Vol. 8 ›› Issue (3) : 405 -480.
Dirac Geometry I: Commutative Algebra
The purpose of this paper and its sequel is to develop the geometry built from the commutative algebras that naturally appear as the homology of differential graded algebras and, more generally, as the homotopy of algebras in spectra. The commutative algebras in question are those in the symmetric monoidal category of graded abelian groups, and, being commutative, they form the affine building blocks of a geometry, as commutative rings form the affine building blocks of algebraic geometry. We name this geometry Dirac geometry, because the grading exhibits the hallmarks of spin in that it is a remnant of the internal structure encoded by anima, it distinguishes symmetric and anti-symmetric behavior, and the coherent cohomology of Dirac schemes and Dirac stacks, which we develop in the sequel, admits half-integer Serre twists. Thus, informally, Dirac geometry constitutes a “square root” of
Dirac rings / Dirac schemes / Evenness of étale maps / Primary 13A02 / Secondary 55Q10
| [1] |
Artin, M., Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Séminaire de Géometrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math., vol. 269. Springer, New York (1972) |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Bourbaki, N.: Algebra I. Chapters 1–3. Translated from the French. Reprint of the 1989 English translation, Elements of Mathematics. Springer, Berlin (1998) |
| [6] |
Bruns, W., Herzog, J.: Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993) |
| [7] |
Davies, J.: A graded Lazard’s theorem. https://drive.google.com/open?id=1a_3mnra5ewLRP1FVa9Yr1qxfUJ-rgQVQ (2019) |
| [8] |
Demazure, M., Gabriel, P.: Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam (1970) |
| [9] |
|
| [10] |
Friedlander, E.M., Mazur, B.: Filtrations on the homology of algebraic varieties. With an appendix by Daniel Quillen. Mem. Am. Math. Soc. 110(529), x+110 pp. (1994) |
| [11] |
Gillam, W.D.: Localization of ringed spaces. arXiv:1103.2139 (2011) |
| [12] |
Goerss, P., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured Ring Spectra. London Math. Soc. Lecture Note Ser., vol. 315, pp. 151–200. Cambridge University Press, Cambridge (2004) |
| [13] |
Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. 4, 228 (1960) |
| [14] |
|
| [15] |
Hesselholt, L., Pstrągowski, P.: Dirac geometry II: Coherent cohomology. arXiv:2303.13444 (2023) |
| [16] |
|
| [17] |
Lurie, J.: Derived algebraic geometry I. https://people.math.harvard.edu/~lurie/papers/DAG-I.pdf |
| [18] |
Lurie, J.: Higher algebra. https://www.math.ias.edu/~lurie/papers/HA.pdf |
| [19] |
Lurie, J.: Spectral algebraic geometry, preliminary version |
| [20] |
Lurie, J.: Spectral algebraic geometry. https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf |
| [21] |
Lurie, J.: Higher Topos Theory, Ann. of Math. Studies, vol. 170. Princeton University Press, Princeton (2009) |
| [22] |
|
| [23] |
Patchkoria, I., Pstrągowski, P.: Adams spectral sequences and Franke’s algebraicity conjecture. arXiv:2110.03669 (2021) |
| [24] |
Pstragowski, P.: Synthetic spectra and the cellular motivic category. Invent. Math. 232, 553–681 (2023) |
| [25] |
Pstrągowski, P., VanKoughnett, P.: Abstract Goerss–Hopkins theory. Adv. Math. 395, 108098 (2022) |
| [26] |
|
| [27] |
Rognes, J.: Galois extensions of structured ring spectra. Stably dualizable groups. Mem. Am. Math. Soc. 192(898), viii+137 pp. (2008) |
| [28] |
|
| [29] |
The Stacks Project Authors, Stacks Project. https://stacks.math.columbia.edu (2018) |
| [30] |
|
The Author(s)
/
| 〈 |
|
〉 |