Mass, Capacitary Functions, and the Mass-to-Capacity Ratio

Pengzi Miao

Peking Mathematical Journal ›› 2023, Vol. 8 ›› Issue (2) : 351 -404.

PDF
Peking Mathematical Journal ›› 2023, Vol. 8 ›› Issue (2) : 351 -404. DOI: 10.1007/s42543-023-00071-7
Original Article

Mass, Capacitary Functions, and the Mass-to-Capacity Ratio

Author information +
History +
PDF

Abstract

We study connections among the ADM mass, positive harmonic functions, and capacity of the boundary on asymptotically flat 3-manifolds of nonnegative scalar curvature. We start with new formulae detecting the mass via positive harmonic functions. Then we derive a family of monotone quantities and geometric inequalities assuming the manifold has simple topology. As a first application, we observe several additional proofs of the 3-dimensional Riemannian positive mass theorem. One proof leads to new, sufficient conditions implying positivity of the mass via

C0
-geometry of regions separating the boundary and
. A special case of such conditions shows if a region enclosing the boundary has relative small volume, then the mass is positive. As further applications, we obtain integral identities for the mass-to-capacity ratio. We also promote the inequalities to become equality on Schwarzschild manifolds outside rotationally symmetric spheres. Among other things, we show the mass-to-capacity ratio is always bounded below by one minus the square root of the normalized Willmore functional of the boundary. Prompted by these findings, we carry out a study of manifolds satisfying a constraint on the mass-to-capacity ratio in the context of the Bartnik quasi-local mass.

Keywords

Harmonic functions / Mass / Capacity / Scalar curvature / Mathematical Sciences / Pure Mathematics

Cite this article

Download citation ▾
Pengzi Miao. Mass, Capacitary Functions, and the Mass-to-Capacity Ratio. Peking Mathematical Journal, 2023, 8(2): 351-404 DOI:10.1007/s42543-023-00071-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agostiniani, V., Mantegazza, C., Mazzieri, L., Oronzio, F.: Riemannian Penrose inequality via nonlinear potential theory. arXiv:2205.11642 (2022)

[2]

Agostiniani, V., Mazzieri, L., Oronzio, F.: A Green’s function proof of the positive mass theorem. arXiv:2108.08402 (2021)

[3]

ArnowittR, DeserS, MisnerCW. Coordinate invariance and energy expressions in general relativity. Phys. Rev., 1961, 1223997-1006.

[4]

BartnikR. The mass of an asymptotically flat manifold. Commun. Pure Appl. Math., 1986, 395661-693.

[5]

BartnikR. New definition of quasilocal mass. Phys. Rev. Lett., 1989, 62202346-2348.

[6]

BrayHL. Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom., 2001, 592177-267.

[7]

BrayHL, KazarasDP, KhuriMA, SternDL. Harmonic functions and the mass of 3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$3$$\end{document}-dimensional asymptotically flat Riemannian manifolds. J. Geom. Anal., 2022, 326184.

[8]

BrayHL, MiaoP. On the capacity of surfaces in manifolds with nonnegative scalar curvature. Invent. Math., 2008, 1723459-475.

[9]

BuntingGL, Masood-ul-AlamAKM. Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravit., 1987, 192147-154.

[10]

Cecchini, S., Zeidler, R.: The positive mass theorem and distance estimates in the spin setting. arXiv:2108.11972 (To appear in Trans. Am. Math. Soc.)

[11]

Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space-Time, pp. 49–59. Plenum Press, New York (1986)

[12]

CorvinoJ. Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys., 2000, 2141137-189.

[13]

FanX-Q, ShiY, TamL-F. Large-sphere and small-sphere limits of the Brown–York mass. Commun. Anal. Geom., 2009, 17137-72.

[14]

HawkingSW. Gravitational radiation in an expanding universe. J. Math. Phys., 1968, 94598-604.

[15]

Hirsch, S., Miao, P., Tam, L.-F.: Monotone quantities of p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-harmonic functions and their applications. arXiv:2211.06939 (To appear in Pure Appl. Math. Q.)

[16]

Hirsch, S., Miao, P., Tsang, T.-Y.: Mass of asymptotically flat 3-manifolds with boundary. arXiv:2009.02959 (To appear in Commun. Anal. Geom.)

[17]

HuiskenG, IlmanenT. The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom., 2001, 593353-437.

[18]

JaureguiJL. Scalar curvature and the relative capacity of geodesic balls. Proc. Am. Math. Soc., 2021, 149114907-4921.

[19]

Lee, D.A., Lesourd, M., Unger, R.: Density and positive mass theorems for incomplete manifolds. arXiv:2201.01328 (2022)

[20]

LeeDA, SormaniC. Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds. J. Reine Angew. Math., 2014, 686: 187-220

[21]

LiY. Ricci flow on asymptotically Euclidean manifolds. Geom. Topol., 2018, 2231837-1891.

[22]

MantoulidisC, MiaoP, TamL-F. Capacity, quasi-local mass, and singular fill-ins. J. Reine Angew. Math., 2020, 768: 55-92.

[23]

MariL, RigoliM, SettiAG. On the 1/H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$1/H$$\end{document}-flow by p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-Laplace approximation: new estimates via fake distances under Ricci lower bounds. Am. J. Math., 2022, 1443779-849.

[24]

MiaoP, TamL-F. Static potentials on asymptotically flat manifolds. Ann. Henri Poincaré, 2015, 16102239-2264.

[25]

MunteanuO, WangJ. Comparison theorems for 3D manifolds with scalar curvature bound. Int. Math. Res. Not., 2023, 202332215-2242.

[26]

Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in Calculus of Variations (Montecatini Terme, 1987). Lecture Notes in Mathematics, vol. 1365, pp. 120–154. Springer, Berlin (1989)

[27]

SchoenR, YauS-T. On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys., 1979, 65145-76.

[28]

SchoenR, YauS-T. The energy and the linear momentum of space-times in general relativity. Commun. Math. Phys., 1981, 79147-51.

[29]

ShiY, WangG, WuJ. On the behavior of quasi-local mass at the infinity along nearly round surfaces. Ann. Glob. Anal. Geom., 2009, 364419-441.

[30]

SternD. Scalar curvature and harmonic maps to S1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${S}^1$$\end{document}. J. Differ. Geom., 2022, 1222259-269.

[31]

WittenE. A new proof of the positive energy theorem. Commun. Math. Phys., 1981, 803381-402.

Funding

National Science Foundation(DMS-1906423)

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

275

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/