A Local Analogue of the Ghost Conjecture of Bergdall–Pollack

Ruochuan Liu , Nha Xuan Truong , Liang Xiao , Bin Zhao

Peking Mathematical Journal ›› 2023, Vol. 7 ›› Issue (1) : 247 -344.

PDF
Peking Mathematical Journal ›› 2023, Vol. 7 ›› Issue (1) : 247 -344. DOI: 10.1007/s42543-023-00063-7
Original Article

A Local Analogue of the Ghost Conjecture of Bergdall–Pollack

Author information +
History +
PDF

Abstract

We formulate a local analogue of the ghost conjecture of Bergdall and Pollack, which essentially relies purely on the representation theory of ${{\,\textrm{GL}\,}}_2({\mathbb {Q}}_p)$. We further study the combinatorial properties of the ghost series as well as its Newton polygon, in particular, giving a characterization of the vertices of the Newton polygon and proving an integrality result of the slopes. In a forthcoming sequel, we will prove this local ghost conjecture under some mild hypothesis and give arithmetic applications.

Cite this article

Download citation ▾
Ruochuan Liu, Nha Xuan Truong, Liang Xiao, Bin Zhao. A Local Analogue of the Ghost Conjecture of Bergdall–Pollack. Peking Mathematical Journal, 2023, 7(1): 247-344 DOI:10.1007/s42543-023-00063-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/