Bernstein Eigenvarieties

Christophe Breuil , Yiwen Ding

Peking Mathematical Journal ›› 2023, Vol. 7 ›› Issue (2) : 471 -642.

PDF
Peking Mathematical Journal ›› 2023, Vol. 7 ›› Issue (2) : 471 -642. DOI: 10.1007/s42543-023-00062-8
Original Article

Bernstein Eigenvarieties

Author information +
History +
PDF

Abstract

We construct parabolic analogues of (global) eigenvarieties, of patched eigenvarieties and of (local) trianguline varieties, that we call, respectively, Bernstein eigenvarieties, patched Bernstein eigenvarieties, and Bernstein paraboline varieties. We study the geometry of these rigid analytic spaces, in particular (generalising results of Breuil–Hellmann–Schraen) we show that their local geometry can be described by certain algebraic schemes related to the generalised Grothendieck–Springer resolution. We deduce several local–global compatibility results, including a classicality result (with no trianguline assumption at p), and new cases towards the locally analytic socle conjecture of Breuil in the non-trianguline case.

Cite this article

Download citation ▾
Christophe Breuil, Yiwen Ding. Bernstein Eigenvarieties. Peking Mathematical Journal, 2023, 7(2): 471-642 DOI:10.1007/s42543-023-00062-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/