An Optimal Volume Growth Estimate for Noncollapsed Steady Gradient Ricci Solitons

Richard H. Bamler, Pak-Yeung Chan, Zilu Ma, Yongjia Zhang

Peking Mathematical Journal ›› 2023, Vol. 6 ›› Issue (2) : 353-364.

Peking Mathematical Journal ›› 2023, Vol. 6 ›› Issue (2) : 353-364. DOI: 10.1007/s42543-023-00060-w
Original Article

An Optimal Volume Growth Estimate for Noncollapsed Steady Gradient Ricci Solitons

Author information +
History +

Abstract

In this paper, we prove a volume growth estimate for steady gradient Ricci solitons with bounded Nash entropy. We show that such a steady gradient Ricci soliton has volume growth rate no smaller than $r^{\frac{n+1}{2}}.$ This result not only improves the estimate in (Chan et al., arXiv:2107.01419, 2021, Theorem 1.3), but also is optimal since the Bryant soliton and Appleton’s solitons (Appleton, arXiv:1708.00161, 2017) have exactly this growth rate.

Cite this article

Download citation ▾
Richard H. Bamler, Pak-Yeung Chan, Zilu Ma, Yongjia Zhang. An Optimal Volume Growth Estimate for Noncollapsed Steady Gradient Ricci Solitons. Peking Mathematical Journal, 2023, 6(2): 353‒364 https://doi.org/10.1007/s42543-023-00060-w
Funding
National Science Foundation(DMS-1906500)

Accesses

Citations

Detail

Sections
Recommended

/