Anosov–Katok Constructions for Quasi-Periodic $\textrm{SL}(2,{{\mathbb {R}}})$ Cocycles
Nikolaos Karaliolios, Xu Xu, Qi Zhou
Peking Mathematical Journal ›› 2022, Vol. 7 ›› Issue (1) : 203-245.
Anosov–Katok Constructions for Quasi-Periodic $\textrm{SL}(2,{{\mathbb {R}}})$ Cocycles
We prove that if the frequency of the quasi-periodic $\textrm{SL}(2,{{\mathbb {R}}})$ cocycle is Diophantine, then each of the following properties is dense in the subcritical regime: for any $\frac{1}{2}<\kappa <1$, the Lyapunov exponent is exactly $\kappa $-Hölder continuous; the extended eigenstates of the potential have optimal sub-linear growth; and the dual operator associated with a subcritical potential has power-law decaying eigenfunctions. The proof is based on fibered Anosov–Katok constructions for quasi-periodic $\textrm{SL}(2,{{\mathbb {R}}})$ cocycles.
/
〈 |
|
〉 |