Anosov–Katok Constructions for Quasi-Periodic $\textrm{SL}(2,{{\mathbb {R}}})$ Cocycles

Nikolaos Karaliolios, Xu Xu, Qi Zhou

Peking Mathematical Journal ›› 2022, Vol. 7 ›› Issue (1) : 203-245.

Peking Mathematical Journal ›› 2022, Vol. 7 ›› Issue (1) : 203-245. DOI: 10.1007/s42543-022-00056-y
Original Article

Anosov–Katok Constructions for Quasi-Periodic $\textrm{SL}(2,{{\mathbb {R}}})$ Cocycles

Author information +
History +

Abstract

We prove that if the frequency of the quasi-periodic $\textrm{SL}(2,{{\mathbb {R}}})$ cocycle is Diophantine, then each of the following properties is dense in the subcritical regime: for any $\frac{1}{2}<\kappa <1$, the Lyapunov exponent is exactly $\kappa $-Hölder continuous; the extended eigenstates of the potential have optimal sub-linear growth; and the dual operator associated with a subcritical potential has power-law decaying eigenfunctions. The proof is based on fibered Anosov–Katok constructions for quasi-periodic $\textrm{SL}(2,{{\mathbb {R}}})$ cocycles.

Cite this article

Download citation ▾
Nikolaos Karaliolios, Xu Xu, Qi Zhou. Anosov–Katok Constructions for Quasi-Periodic $\textrm{SL}(2,{{\mathbb {R}}})$ Cocycles. Peking Mathematical Journal, 2022, 7(1): 203‒245 https://doi.org/10.1007/s42543-022-00056-y
Funding
National Key R &D Program of China(2020YFA0713300)

Accesses

Citations

Detail

Sections
Recommended

/