Equivariant ${\mathbb {R}}$-Test Configurations and Semistable Limits of ${\mathbb {Q}}$-Fano Group Compactifications

Yan Li, Zhenye Li

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 559-607.

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 559-607. DOI: 10.1007/s42543-022-00054-0
Original Article

Equivariant ${\mathbb {R}}$-Test Configurations and Semistable Limits of ${\mathbb {Q}}$-Fano Group Compactifications

Author information +
History +

Abstract

Let G be a connected, complex reductive group. In this paper, we classify $G\times G$-equivariant normal ${\mathbb {R}}$-test configurations of a polarized G-compactification. Then, for ${\mathbb {Q}}$-Fano G-compactifications, we express the H-invariants of their equivariant normal ${\mathbb {R}}$-test configurations in terms of the combinatory data. Based on Han and Li “Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties”, we compute the semistable limit of a K-unstable Fano G-compactification. As an application, we show that for the two smooth K-unstable Fano SO$_4({\mathbb {C}})$-compactifications, the corresponding semistable limits are indeed the limit spaces of the normalized Kähler–Ricci flow.

Cite this article

Download citation ▾
Yan Li, Zhenye Li. Equivariant ${\mathbb {R}}$-Test Configurations and Semistable Limits of ${\mathbb {Q}}$-Fano Group Compactifications. Peking Mathematical Journal, 2022, 6(2): 559‒607 https://doi.org/10.1007/s42543-022-00054-0
Funding
Young Scientists Fund(12101043); Beijing Institute of Technology

Accesses

Citations

Detail

Sections
Recommended

/