Equivariant ${\mathbb {R}}$-Test Configurations and Semistable Limits of ${\mathbb {Q}}$-Fano Group Compactifications

Yan Li , Zhenye Li

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 559 -607.

PDF
Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 559 -607. DOI: 10.1007/s42543-022-00054-0
Original Article

Equivariant ${\mathbb {R}}$-Test Configurations and Semistable Limits of ${\mathbb {Q}}$-Fano Group Compactifications

Author information +
History +
PDF

Abstract

Let G be a connected, complex reductive group. In this paper, we classify $G\times G$-equivariant normal ${\mathbb {R}}$-test configurations of a polarized G-compactification. Then, for ${\mathbb {Q}}$-Fano G-compactifications, we express the H-invariants of their equivariant normal ${\mathbb {R}}$-test configurations in terms of the combinatory data. Based on Han and Li “Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties”, we compute the semistable limit of a K-unstable Fano G-compactification. As an application, we show that for the two smooth K-unstable Fano SO$_4({\mathbb {C}})$-compactifications, the corresponding semistable limits are indeed the limit spaces of the normalized Kähler–Ricci flow.

Cite this article

Download citation ▾
Yan Li, Zhenye Li. Equivariant ${\mathbb {R}}$-Test Configurations and Semistable Limits of ${\mathbb {Q}}$-Fano Group Compactifications. Peking Mathematical Journal, 2022, 6(2): 559-607 DOI:10.1007/s42543-022-00054-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Young Scientists Fund(12101043)

Beijing Institute of Technology

AI Summary AI Mindmap
PDF

235

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/