Variational Structure and Uniqueness of Generalized Kähler–Ricci Solitons

Vestislav Apostolov , Jeffrey Streets , Yury Ustinovskiy

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 307 -351.

PDF
Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 307 -351. DOI: 10.1007/s42543-022-00049-x
Original Article

Variational Structure and Uniqueness of Generalized Kähler–Ricci Solitons

Author information +
History +
PDF

Abstract

Under broad hypotheses we derive a scalar reduction of the generalized Kähler–Ricci soliton system. We realize solutions as critical points of a functional, analogous to the classical Aubin energy, defined on an orbit of the natural Hamiltonian action of diffeomorphisms, thought of as a generalized Kähler class. This functional is convex on a large set of paths in this space, and using this we show rigidity of solitons in their generalized Kähler class. As an application we prove uniqueness of the generalized Kähler–Ricci solitons on Hopf surfaces constructed in Streets and Ustinovskiy [Commun. Pure Appl. Math. 74(9), 1896–1914 (2020)], finishing the classification in complex dimension 2.

Cite this article

Download citation ▾
Vestislav Apostolov, Jeffrey Streets, Yury Ustinovskiy. Variational Structure and Uniqueness of Generalized Kähler–Ricci Solitons. Peking Mathematical Journal, 2022, 6(2): 307-351 DOI:10.1007/s42543-022-00049-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/