Concavity of Minimal L2 Integrals Related to Multiplier Ideal Sheaves

Qi’an Guan , Zhitong Mi

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 393 -457.

PDF
Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 393 -457. DOI: 10.1007/s42543-021-00047-5
Original Article

Concavity of Minimal L2 Integrals Related to Multiplier Ideal Sheaves

Author information +
History +
PDF

Abstract

In this article, we present the concavity of the minimal $L^2$ integrals related to multiplier ideals sheaves on Stein manifolds. As applications, we obtain a necessary condition for the concavity degenerating to linearity, a characterization for 1-dimensional case, and a characterization for the equality in 1-dimensional optimal $L^{2}$ extension problem to hold.

Cite this article

Download citation ▾
Qi’an Guan, Zhitong Mi. Concavity of Minimal L2 Integrals Related to Multiplier Ideal Sheaves. Peking Mathematical Journal, 2022, 6(2): 393-457 DOI:10.1007/s42543-021-00047-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(11825101)

AI Summary AI Mindmap
PDF

288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/