Concavity of Minimal L2 Integrals Related to Multiplier Ideal Sheaves

Qi’an Guan, Zhitong Mi

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 393-457.

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (2) : 393-457. DOI: 10.1007/s42543-021-00047-5
Original Article

Concavity of Minimal L2 Integrals Related to Multiplier Ideal Sheaves

Author information +
History +

Abstract

In this article, we present the concavity of the minimal $L^2$ integrals related to multiplier ideals sheaves on Stein manifolds. As applications, we obtain a necessary condition for the concavity degenerating to linearity, a characterization for 1-dimensional case, and a characterization for the equality in 1-dimensional optimal $L^{2}$ extension problem to hold.

Cite this article

Download citation ▾
Qi’an Guan, Zhitong Mi. Concavity of Minimal L2 Integrals Related to Multiplier Ideal Sheaves. Peking Mathematical Journal, 2022, 6(2): 393‒457 https://doi.org/10.1007/s42543-021-00047-5
Funding
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(11825101)

Accesses

Citations

Detail

Sections
Recommended

/