Verlinde/Grassmannian Correspondence and Rank 2 $\delta$-Wall-Crossing

Yongbin Ruan , Ming Zhang

Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (1) : 217 -306.

PDF
Peking Mathematical Journal ›› 2022, Vol. 6 ›› Issue (1) : 217 -306. DOI: 10.1007/s42543-021-00046-6
Original Article

Verlinde/Grassmannian Correspondence and Rank 2 $\delta$-Wall-Crossing

Author information +
History +
PDF

Abstract

Motivated by Witten’s work, we propose a K-theoretic Verlinde/Grassmannian correspondence which relates the GL Verlinde numbers to the K-theoretic quasimap invariants of the Grassmannian. We recover these two types of invariants by imposing different stability conditions on the gauged linear sigma model associated with the Grassmannian. We construct two families of stability conditions connecting the two theories and prove two wall-crossing results. We confirm the Verlinde/Grassmannian correspondence in the rank two case.

Cite this article

Download citation ▾
Yongbin Ruan, Ming Zhang. Verlinde/Grassmannian Correspondence and Rank 2 $\delta$-Wall-Crossing. Peking Mathematical Journal, 2022, 6(1): 217-306 DOI:10.1007/s42543-021-00046-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Directorate for Mathematical and Physical Sciences(NSF grant DMS 1807079 and NSF FRG grant DMS 1564457)

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/