Quantitative Estimates on the Singular Sets of Alexandrov Spaces
Nan Li, Aaron Naber
Peking Mathematical Journal ›› 2020, Vol. 3 ›› Issue (2) : 203-234.
Quantitative Estimates on the Singular Sets of Alexandrov Spaces
Let $X\in \text {Alex}\,^n(-1)$ be an n-dimensional Alexandrov space with curvature $\ge -1$. Let the r-scale $(k,\epsilon )$-singular set ${\mathcal {S}}^k_{\epsilon ,\,r}(X)$ be the collection of $x\in X$ so that $B_r(x)$ is not $\epsilon r$-close to a ball in any splitting space $\mathbb {R}^{k+1}\times Z$. We show that there exists $C(n,\epsilon )>0$ and $\beta (n,\epsilon )>0$, independent of the volume, so that for any disjoint collection $\big \{B_{r_i}(x_i):x_i\in {\mathcal {S}}_{\epsilon ,\,\beta r_i}^k(X)\cap B_1, \,r_i\le 1\big \}$, the packing estimate $\sum r_i^k\le C$ holds. Consequently, we obtain the Hausdorff measure estimates ${\mathcal {H}}^k({\mathcal {S}}^k_\epsilon (X)\cap B_1)\le C$ and ${\mathcal {H}}^n\big (B_r ({\mathcal {S}}^k_{\epsilon ,\,r}(X))\cap B_1(p)\big )\le C\,r^{n-k}$. This answers an open question in Kapovitch et al. (Metric-measure boundary and geodesic flow on Alexandrov spaces. arXiv:1705.04767 (
/
〈 |
|
〉 |