Fiber optic sensors have been gradually used in aerospace, petrochemical, electronic power, civil engineering, and biomedical fields because of their many advantages such as the anti-electromagnetic interference, corrosion resistance, light weight, small size, high accuracy, and easy reuse. In recent years, sensing and demodulation technologies based on microwave photonics have attracted widespread attention. Optical fiber sensing combined with microwave photonics has higher sensitivity and flexibility, which is important for the demodulation of interferometric signals. This article introduces and analyzes the principle, structure, and performance of the demodulation technology of fiber optic interferometric signals based on microwave photonics from the perspective of system structures, such as filters, oscillators, and interferometers, and discusses the future research and development directions.
A large number of slopes appear along the line during railway construction, which will pose a threat to railway safety operation. Slope monitoring plays an important role in ensuring the safety of railway operation. Aiming at the difficulties of sensor multiplexing, low accuracy, and large disturbance by trains, this paper proposes a railway slope monitoring method based on integrated fusion detection of inclination and vibration. Instability and failure characteristics of the K3 slope in Shuohuang Railway and dynamic characteristics under the excitation of the train load are analyzed by the finite element method (FEM) analysis. Based on the above analysis, a slope monitoring system is established utilizing the self-developed dual-parameter fiber Bragg grating (FBG) sensor. The monitoring data of the past four years show that the slope is in a relatively stable state at present. The monitoring data are consistent with the results of the FEM. The feasibility of the damage identification method based on inclination and vibration characteristics is verified, which provides a new method for railway slope monitoring.
We report the numerical and experimental studies of the two-dimensional Brillouin gain spectrum (BGS) distribution deformation induced by the self-phase modulation in the Brillouin optical time domain reflectometry (BOTDR) with a 20.6 km sensing distance. The BGS distribution deformation is investigated by analyzing the evolution of the point spread function along the fiber in the two-dimensional model of the BOTDR. In the simulation and experimental results, the specific deformation degree of the BGS distribution induced by the self-phase modulation is related to the pump pulse profile, pump pulse peak power, BGS demodulation method, and detected scattered light component. By comprehensively analyzing the evolution of the point spread function induced by the self-phase modulation and using the image deconvolution, a typical BOTDR sensor with a 25 ns pump pulse reaches the 20 cm spatial resolution over the 20.6 km sensing fiber.
Glucose is an indispensable nutrient for metabolism in living organisms and is widely used in food, industry, and medical fields. Glucose is often added as a sweetener in food and often used in industry as a reducing agent for various products. In medical treatment, glucose is added to many drugs as a nutritional additive, and it is also an indicator that diabetics need to pay attention to at all time. Therefore, the market has a great demand for low-cost, high-sensitivity, fast, and convenient glucose sensors, and the industry has always attached great importance to the work of creating new glucose sensor devices. Therefore, we proposed a SnO2 nanofibers/Au structure multimode-single-mode-multimode (MSM) fiber surface plasmon resonance (SPR) glucose sensor. SnO2 nanofibers were fixed to a single-mode fiber core that had been plated with the Au film by electrospinning. When the glucose concentration increased at 5 vol% intervals, the corresponding resonance wavelengths had different degrees of redshifts. Comparing the two structures, as the glucose concentration range increased from 0 vol% to 60 vol%, the sensitivity increased from 228.7 nm/vol% in the Au structure to 337.3 nm/vol% in the SnO2 nanofiber/Au structure. At the same time, the linear correlation between the resonant wavelength and the refractive index of the two structures was greater than 0.98. Moreover, the SnO2 nanofibers/Au structure significantly improved the practical application performance of SPR sensors.
Vacuum ultraviolet (VUV) light sensing shows great potential applications in the space science, materials, biophysics, and plasma physics. In this work, an all-optical detection method is proposed for VUV sensing by constructing an optical fiber-end Fabry-Pérot interferometer based on a single aluminum nitride (AlN) microwire. Compared with the traditional electrical devices, this all-optical detection method overcomes the difficulties like the fast response and electromagnetic interference immunity in detecting VUV bands at the present stage, and improves the response speed. The proposed device shows the excellent performance of VUV detection, with the static sensitivity of 1.03 nm/(W·cm−2), response rise time of down to 10 µs, and decay time of 0.64 ms. Beneficial from the excellent radiation resistance of AlN microwires and UV resistance of silica fibers, the proposed device is expected to have the good stability and potential applications in the fields of the solar physics and space exploration.