Two-Dimensional Reconstructed Image of a Subsurface Structure Using Continuous Scanned Photothermal Imaging
Moojoong Kim , Hyunjung Kim
Photonic Sensors ›› 2024, Vol. 15 ›› Issue (2) : 250201
Two-Dimensional Reconstructed Image of a Subsurface Structure Using Continuous Scanned Photothermal Imaging
This study presents the two-dimensional (2D) image of a subsurface structure reconstructed using an imaging method based on the photothermal effect. The photothermal imaging method is based on the deflection method using two lasers: pump and probe lasers. A continuous scanning technique is proposed for 2D (x- and y-directions) surface scanning. The continuous scanning method is compared with the conventional point-by-point scanning technique, and a low-pass fast Fourier transform filter and a Marr-Hildreth detector are found to produce significant results. The photothermal imaging method with continuous 2D surface scanning is performed on three copper-resin double-layer samples with different subsurface structures. The subsurface structures of the copper-resin double-layer samples comprise a square block of 5×5 mm2 area and blocks shaped as the alphabet letters “T” and “F”. The letters are 3 mm wide and 10×13 mm2 in area. All three shapes are 1 mm thick and located at a depth of 0.5 mm from the surface of the copper block. The reconstructed photothermal images show an absolute error within 0.122 mm compared with the actual subsurface structure, equivalent to a 2.3% relative error.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
F. A. McDonald, G. C. Wetsel, and S. A. Stotts, “Scanned photothermal Imaging of subsurface structure,” Acoustical Imaging, 1982: 147–155. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
The Author(s)
/
| 〈 |
|
〉 |