High-Sensitivity Microbend Sensor Based on Light Cones in Coreless Fiber

Junhua Huang , Ya Han , Lei Chen , Yu Zhong , Feifan Huang , Keng-Chang Chou , Linwei Huang , Guishi Liu , Yaofei Chen , Zhe Chen , Yunhan Luo

Photonic Sensors ›› 2025, Vol. 15 ›› Issue (4) : 250429

PDF
Photonic Sensors ›› 2025, Vol. 15 ›› Issue (4) : 250429 DOI: 10.1007/s13320-025-0774-0
Regular
research-article

High-Sensitivity Microbend Sensor Based on Light Cones in Coreless Fiber

Author information +
History +
PDF

Abstract

Eigenmode expansion (EME) is a widely used method for modeling the electromagnetic wave propagation in multimode waveguides, where it breaks down signals into local eigenmodes and calculates them independently. Nevertheless, this methodology may challenge the causality mandated by the theory of special relativity, thus potentially disrupting the cause-and-effect relationship. This study experimentally explored light transmission in the multimode coreless fiber and found discrepancies between the EME method and measurement. To reconcile these inconsistencies, we introduced a light cone model, providing an alternative interpretation guided by the principles of special relativity. Remarkably, this innovative model did not merely resolve the observed discrepancies between the theory and experiments, but also presented a pioneering technique for designing microbend sensors. Through experimentation, we achieved the remarkable sensitivity of 500 dB/m−1 at a bending curvature of 0 m−1. Our research advances the understanding of multimode systems and paves the way for innovative sensing and communications applications in compact devices.

Keywords

Microbend sensor / light cone / causality / eigenmode expansion / modes interference

Cite this article

Download citation ▾
Junhua Huang, Ya Han, Lei Chen, Yu Zhong, Feifan Huang, Keng-Chang Chou, Linwei Huang, Guishi Liu, Yaofei Chen, Zhe Chen, Yunhan Luo. High-Sensitivity Microbend Sensor Based on Light Cones in Coreless Fiber. Photonic Sensors, 2025, 15(4): 250429 DOI:10.1007/s13320-025-0774-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sanders S, Zundel L, Kort-Kamp W J, Dalvit D A, Manjavacas A. Near-field radiative heat transfer eigenmodes. Physical Review Letters, 2021, 126(19): 193601.

[2]

Qiu J, Meng J, Liu Z, Han T, Ding Z. Fast simulation and design of the fiber probe with a fiber-based pupil filter for optical coherence tomography using the eigenmode expansion approach. Optics Express, 2021, 29(2): 2172-183.

[3]

Tian K, Farrell G, Wang X, Yang W, Xin Y, Liang H. et al.. Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure. Optics Express, 2017, 25(16): 18885-18896.

[4]

Zhang Y, Liao C, Lin C, Shao Y, Wang Y, Wang Y. Surface plasmon resonance refractive index sensor based on fiber-interface waveguide inscribed by femtosecond laser. Optics Letters, 2019, 44(10): 2434-2437.

[5]

Hammond I M, Hammond A M, Camacho R M. Deep learning-enhanced, open-source eigenmode expansion. Optics Letters, 2022, 47(6): 1383-1386.

[6]

Du Y, Turtaev S, Leite I T, Lorenz A, Kobelke J, Wondraczek K. et al.. Hybrid multimode-multicore fibre based holographic endoscope for deep-tissue neurophotonics. Light: Advanced Manufacturing, 2022, 3(3): 408-416

[7]

Chen Y, Hu Y, Yan F, Xiao L, Huang J, Ni L. et al.. Ultrahigh-sensitive and compact temperature sensor based on no-core fiber with PMMA coating. Optics Express, 2021, 29(23): 37591-37601.

[8]

San Fabián N, Socorro-Leránoz A B, Del Villar I, Díaz S, Matías I R. Multimode-coreless-multimode fiber-based sensors: theoretical and experimental study. Journal of Lightwave Technology, 2019, 37(15): 3844-3850.

[9]

Peruzzo A, Laing A, Politi A, Rudolph T, O’brien J L. Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2011, 2(1): 224.

[10]

Heinrich M, Miri M A, Stützer S, El-Ganainy R, Nolte S, Szameit A. et al.. Supersymmetric mode converters. Nature Communications, 2014, 5(1): 3698.

[11]

Hokmabadi M P, Nye N S, El-Ganainy R, Christodoulides D N, Khajavikhan M. Supersymmetric laser arrays. Science, 2019, 363(6427): 623-626.

[12]

Fatemi F K, Beadie G. Spatially-resolved Rayleigh scattering for analysis of vector mode propagation in few-mode fibers. Optics Express, 2015, 23(3): 3831-3840.

[13]

Hoffman J E, Fatemi F K, Beadie G, Rolston S L, Orozco L A. Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation. Optica, 2015, 2(5): 416-423.

[14]

Chen B, Bao Q, Tong L. Direct observation of multimode interference in rare-earth doped micro/nanofibers. Optics Express, 2019, 27(19): 26728-26737.

[15]

Wang R, Tian K, Zhang M, Zhang M, Farrell G, Lewis E. et al.. Investigation on the dependence of directional torsion measurement on multimode fiber geometry. Journal of Lightwave Technology, 2022, 40(12): 3997-4002.

[16]

He J, He J, Xu X, Du B, Xu B, Liao C. et al.. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing. Photonics Research, 2021, 9(10): 2052-2059.

[17]

Heidari M, Faramarzi V, Sharifi Z, Hashemi M, Bahadori-Haghighi S, Janjan B. et al.. A high-performance TE modulator/TM-pass polarizer using selective mode shaping in a VO2-based side-polished fiber. Nanophotonics, 2021, 10(13): 3451-3463.

[18]

Dong L, Liu X, Zhang Y, Zhuo L, Li D, Zhu W. et al.. All-fiber multifunctional electrooptic prototype device with a graphene/PMMA(poly (methyl methacrylate)) hybrid film integrated on coreless side-polished fibers. ACS Applied Electronic Materials, 2020, 2(2): 447-455.

[19]

Schnauber P, Schall J, Bounouar S, Hohne T, Park S I, Ryu G H. et al.. Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography. Nano Letters, 2018, 18(4): 2336-2342.

[20]

Zeisberger M, Schneidewind H, Hübner U, Wieduwilt T, Plidschun M, Schmidt M A. Plasmonic metalens-enhanced single-mode fibers: a pathway toward remote light focusing. Advanced Photonics Research, 2021, 2(11): 2100100.

[21]

Riesen N, Phillips N, Nguyen L V, Warren-Smith S C, Priest C, Lancaster D G. Design considerations for graded index fiber tip Fabry-Perot interferometers. Measurement Science and Technology, 2021, 32(5): 055201.

[22]

Tian K, Farrell G, Wang X, Xin Y, Du Y, Yang W. et al.. High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol. Sensors and Actuators A: Physical, 2018, 284: 28-34.

[23]

Xu W, Shi J, Yang X, Xu D, Rong F, Zhao J. et al.. Relative humidity sensor based on no-core fiber coated by agarose-gel film. Sensors, 2017, 17(10): 2353.

[24]

Zhou X, Chen K, Mao X, Yu Q. A reflective fiber-optic refractive index sensor based on multimode interference in a coreless silica fiber. Optics Communications, 2015, 340: 50-55.

[25]

Wang Q, Farrell G, Yan W. Investigation on single-mode-multimode-single-mode fiber structure. Journal of Lightwave Technology, 2008, 26(5): 512-519.

[26]

Silva S, Pachon E G, Franco M A, Jorge P, Santos J, Malcata F X. et al.. Curvature and temperature discrimination using multimode interference fiber optic structures – a proof of concept. Journal of Lightwave Technology, 2012, 30(23): 3569-3575.

[27]

Marrujo-García S, Hernández-Romano I, Torres-Cisneros M, May-Arrioja D A, Minkovich V P, Monzón-Hernández D. Temperature-independent curvature sensor based on in-fiber Mach-Zehnder interferometer using hollow-core fiber. Journal of Lightwave Technology, 2020, 38(15): 4166-4173

[28]

Herrera-Piad L A, Hernández-Romano I, May-Arrioja D A, Minkovich V P, Torres-Cisneros M. Sensitivity enhancement of curvature fiber sensor based on polymer-coated capillary hollow-core fiber. Sensors, 2020, 20(13): 3763.

[29]

Saffari P, Allsop T, Adebayo A, Webb D, Haynes R, Roth M M. Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures. Optics Letters, 2014, 39(12): 3508-3511.

[30]

Feng D, Jiang B, Jiang Y, Zhao J. Temperature-compensated fiber directional-bend sensor based on a sandwiched MMF-PMPCF structure. Applied Optics, 2021, 60(2): 433-437.

[31]

Wang R, Tian K, Zhang M, Jiang Y, Yuan L, Jin G. et al.. Investigation on the polarization dependence of an angled polished multimode fibre structure. Journal of Lightwave Technology, 2020, 38(16): 4520-4525.

[32]

Xiao G, Zhang K, Yang Y, Yang H, Guo L, Li J. et al.. Graphene oxide sensitized no-core fiber step-index distribution sucrose sensor. Photonics, 2020, 7(4): 101.

[33]

Yang W, Zhang S, Geng T, Li L, Li G, Gong Y. et al.. High sensitivity refractometer based on a tapered-single mode-no core-single mode fiber structure. Sensors, 2019, 19(7): 1722.

[34]

Pourbeyram H, Sidorenko P, Wu F O, Bender N, Wright L, Christodoulides D N. et al.. Direct observations of thermalization to a Rayleigh-Jeans distribution in multimode optical fibres. Nature Physics, 2022, 18(6): 685-690.

[35]

Wang X, Zhang J, Tian K, Wang S, Yuan L, Lewis E. et al.. Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance. Optics Express, 2018, 26(20): 26534-26543.

[36]

Abdzaid T A, Taher H J. No-core fiber interferometry pH sensor based on a polyvinyl alcohol/polyacrylic acid and silica/polyvinyl alcohol/polyacrylic acid hydrogel coating. Applied Optics, 2021, 60(6): 1587-1594.

[37]

Apriyanto H, Ravet G, Bernal O D, Cattoen M, Seat H C, Chavagnac V. et al.. Comprehensive modeling of multimode fiber sensors for refractive index measurement and experimental validation. Scientific Reports, 2018, 8(1): 5912.

[38]

Chen L, Han Y, Liu Q, Liu Y G, Zhang W, Chou K C. Microcavity-coupled fiber Bragg grating with tunable reflection spectra and speed of light. Optics Letters, 2018, 43(8): 1662-1665.

[39]

Zhang H, Wang D, Wang Z, Xu B, Zhao C, Zhang S. et al.. A Mach-Zehnder interferometer based on a no-core fiber with in-fiber waveguides. IEEE Photonics Technology Letters, 2019, 31(13): 1084-1087.

[40]

M. M. Hasan and H. J. Taher, “Optical fiber bi-directional strain sensor based on coreless fiber,” Applied Nanoscience, 2021, 1–9.

[41]

Zhao R, Shu X, Wang P. High-performance bending sensor based on femtosecond laser-inscribed in-fiber Mach-Zehnder interferometer. Journal of Lightwave Technology, 2020, 38(22): 6371-6378.

[42]

Li Y, Liu Z, Jian S. Multimode interference refractive index sensor based on coreless fiber. Photonic Sensors, 2014, 4(1): 21-27.

[43]

Li W, Wang D. Femtosecond laser inscribed straight waveguide in no-core fiber for in-line Mach-Zehnder interferometer construction. Optics Letters, 2018, 43(14): 3405-3408.

[44]

Longhi S. Quantum-optical analogies using photonic structures. Laser & Photonics Reviews, 2009, 3(3): 243-261.

[45]

Chen L, Zhang W G, Wang L, Zhang H, Sieg J, Zhou Q. et al.. In-fiber torsion sensor based on dual polarized Mach-Zehnder interference. Optics Express, 2014, 22(26): 31654-31664.

[46]

Chen L, Zhang W G, Li X Y, Wang S, Yan T Y, Sieg J. et al.. Microfiber interferometer with surface plasmon-polariton involvement. Optics Letters, 2016, 41(7): 1309-1312.

[47]

Zhang Y S, Zhang W G, Chen L, Zhang Y X, Wang S, Yu L. et al.. Concave-lens-like long-period fiber grating bidirectional high-sensitivity bending sensor. Optics Letters, 2017, 42(19): 3892-3895.

[48]

Müller G M, Frank A, Yang L, Gu X, Bohnert K. Temperature compensation of interferometric and polarimetric fiber-optic current sensors with spun highly birefringent fiber. Journal of Lightwave Technology, 2019, 37(18): 4507-4513.

[49]

Novais S, Silva S O, Frazão O. A self-referencing intensity-based Fabry-Pérot cavity for curvature measurement. IEEE Sensors Letters, 2019, 3(10): 1-4.

[50]

Zhang S S, Zhang W G, Gao S C, Geng P C, Xue X L. Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper. Optics Letters, 2012, 37(21): 4480-4482.

[51]

Hu X W, Peng J G, Yang L Y, Li J Y, Li H Q, Dai N L. Design and fabrication of a heterostructured cladding solid-core photonic bandgap fiber for construction of Mach-Zehnder interferometer and high sensitive curvature sensor. Optics Express, 2018, 26(6): 7005-7012.

[52]

Huang Q D, Yu Y Q, Li X J, Chen X, Zhang Y F, Zhou W. et al.. Micro-bending vector sensor based on six-air-hole grapefruit microstructure fiber using lateral offset splicing. Optics Express, 2015, 23(3): 3010-3019.

[53]

Dong S D, Dong B, Yu C Y, Guo Y X. High sensitivity optical fiber curvature sensor based on cascaded fiber interferometer. Journal of Lightwave Technology, 2018, 36(4): 1125-1130.

[54]

Cui W, Si J H, Chen T, Hou X. Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper. Optics Express, 2015, 23(9): 11031-11036.

[55]

Gong H, Wang D N, Xu B, Ni K, Liu H, Zhao C L. Miniature and robust optical fiber in-line Mach-Zehnder interferometer based on a hollow ellipsoid. Optics Letters, 2015, 40(15): 3516-3519.

[56]

Novais S, Silva S O, Frazão O. A self-referencing intensity-based Fabry-Perot cavity for curvature measurement. IEEE Sensors Letters, 2019, 3(10): 3501704.

[57]

Xu S Y, Chang W J, Luo Y Y, Shum P P, Wei L, Zhang Y A. et al.. Compact robust vector bending sensor based on single stress-applying fiber. IEEE Sensors Journal, 2021, 21(7): 9165-9170.

[58]

Villatoro J, Amorebieta J, Ortega-Gomez A, Antonio-Lopez E, Zubia J, Schülzgen A. et al.. Composed multicore fiber structure for direction-sensitive curvature monitoring. APL Photonics, 2020, 5: 070801.

[59]

Zhang Y S, Zhang W G, Zhang Y X, Wang S, Yu L, Yan Y Y. Simultaneous measurement of curvature and temperature based on LP11 mode Bragg grating in seven-core fiber. Measurement Science and Technology, 2017, 28(5): 055101.

[60]

Kong Y J, Shu X W. In-fiber hybrid cladding waveguide by femtosecond inscription for two-dimensional vector bend sensing. Journal of Lightwave Technology, 2021, 39(7): 2194-2204.

[61]

Jiang B Q, Bai Z Y, Wang C L, Zhao Y H, Zhao J L, Zhang L. et al.. In-line Mach-Zehnder interferometer with D-shaped fiber grating for temperature-discriminated directional curvature measurement. Journal of Lightwave Technology, 2018, 36(3): 742-747.

[62]

Yin G L, Zhang F C, Xu B J, He J, Wang Y Q. Intensity-modulated bend sensor by using a twin core fiber: theoretical and experimental studies. Optics Express, 2020, 28(10): 14850-14858.

[63]

Chen P C, Shu X W, Sugden K. Compact assembly-free vector bend sensor based on all-in-fiber-core Mach-Zehnder interferometer. Optics Letters, 2018, 43(3): 531-534.

[64]

Wang S, Zhang W G, Chen L, Zhang Y X, Geng P C, Zhang Y S. et al.. Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber. Optics Letters, 2017, 42(23): 4938-4941.

[65]

Yang K M, He J, Liao C R, Wang Y, Liu S, Guo K K. et al.. Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing. Journal of Lightwave Technology, 2017, 35(21): 4670-4676.

[66]

Wu Z F, Shum P P, Shao X G, Zhang H L, Zhang N, Huang T Y. et al.. Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber. Optics Letters, 2016, 41(2): 380-383.

[67]

Sun B, Huang Y, Liu S, Wang C, He J, Liao C. et al.. Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement. Optics Express, 2015, 23(11): 14596-602.

[68]

Zhang L Y, Zhang W G, Chen L, Yan T Y, Wang L, Wang B. et al.. A fiber bending vector sensor based on M-Z interferometer exploiting two hump-shaped tapers. IEEE Photonics Technology Letters, 2015, 27(11): 1240-1243

[69]

Gong H P, Song H F, Li X R, Wang J F, Dong X Y. An optical fiber curvature sensor based on photonic crystal fiber modal interferometer. Sensors and Actuators A: Physical, 2013, 195: 139-141.

[70]

Li S, Wang Z, Liu Y, Han T, Wu Z, Wei C. et al.. Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber. Optics Letters, 2012, 37(10): 1610-1612.

[71]

Feng D Y, Jiang B Q, Jiang Y J, Zhao J L. Temperature-compensated fiber directional-bend sensor based on a sandwiched MMF-PMPCF structure. Applied Optics, 2021, 60(2): 433-437.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/