PDF
Abstract
Optical frequency combs, characterized by their evenly spaced spectral lines with high phase coherence, possess revolutionary measurement capabilities. It is enabling applications in a wide bound of sensing fields, including precision spectroscopy, range measurement, and acoustic sensing. Leveraging parametric frequency conversion, an optical frequency comb can be generated in a microresonator. This approach provides access to high repetition rates at the level of the gigahertz (GHz) or even terahertz (THz), promising ultrafast sensing through chip-scale integration. Its unique spectral feature extends its application areas, such as astronomy, microwave photonics, or molecular fingerprinting. Recent advances have uncovered the general principle of microresonator-based optical frequency combs, helping researchers to generate and control them. Various soliton phenomena in microresonators, including the Stokes solitons, counter-propagating solitons, and soliton crystals, have been reported with the potential to boost the performance of optical frequency combs and ignite design innovation. We review progress in spectroscopy and sensing applications of optical microcombs and discuss current opportunities and challenges.
Keywords
Optical frequency comb
/
Kerr frequency comb
/
electro-optic frequency comb
/
optical microresonator
/
spectroscopy
/
sensing
Cite this article
Download citation ▾
Riyao Zhang, Han Zhou, Hao Wen, Lei Shi, Xinliang Zhang.
Progress in Spectroscopy and Sensing Applications of Optical Microcombs.
Photonic Sensors, 2025, 15(4): 250436 DOI:10.1007/s13320-025-0773-1
| [1] |
Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450(7173): 1214-1217
|
| [2] |
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555-559
|
| [3] |
Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 2020, 369(6501): eaay3676
|
| [4] |
Wu J, Xu X, Nguyen T G, Chu S T, Little B E, Morandotti R, et al.. RF photonics: an optical microcombs’ perspective. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(41-20
|
| [5] |
Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, et al.. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288(5466): 635-639
|
| [6] |
Udem T, Reichert J, Holzwarth R, Hänsch T W. Absolute optical frequency measurement of the cesium D-1 line with a mode-locked laser. Physical Review Letters, 1999, 82(18): 3568-3571
|
| [7] |
Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Advances in Optics and Photonics, 2016, 8(3): 465-540
|
| [8] |
Rauschenberger J, Fortier T M, Jones D J, Ye J, Cundiff S T. Control of the frequency comb from a mode-locked erbium-doped fiber laser. Optics Express, 2002, 10(24): 1404-1410
|
| [9] |
Wu R, Torres-Company V, Leaird D E, Weiner A M. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Optics Express, 2013, 21(5): 6045-6052
|
| [10] |
Zhou R, Latkowski S, O’Carroll J, Phelan R, Barry L P, Anandarajah P. 40 nm wavelength tunable gain-switched optical comb source. Optics Express, 2011, 19(26): B415-B420
|
| [11] |
Sakamoto T, Kawanishi T, Tsuchiya M. 10 GHz, 2.4 ps pulse generation using a singlestage dual-drive mach-zehnder modulator. Optics Letters, 2008, 33(8): 890-892
|
| [12] |
Wang W, Chu S T, Little B E, Pasquazi A, Wang Y, Wang L, et al.. Dual-pump Kerr microcavity optical frequency comb with varying FSR spacing. Scientific Reports, 2016, 6(1): 28501
|
| [13] |
Bao C, Yuan Z, Wang H, Wu L, Shen B, Sung K, et al.. Interleaved difference-frequency generation for microcomb spectral densification in the midinfrared. Optica, 2020, 7(4309-315
|
| [14] |
Chang L, Liu S, Bowers J E. Integrated optical frequency comb technologies. Nature Photonics, 2022, 16(2): 95-108
|
| [15] |
Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, et al.. Temporal solitons in optical microresonators. Nature Photonics, 2014, 8(2): 145-152
|
| [16] |
Lee S H, Oh D Y, Yang Q F, Shen B, Wang H, Yang K Y, et al.. Towards visible soliton microcomb generation. Nature Communications, 2017, 8: 1295
|
| [17] |
Pfeiffer M H P, Herkommer C, Liu J, Guo H, Karpov M, Lucas E, et al.. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 2017, 4(7): 684-691
|
| [18] |
Griffith A G, Lau R K W, Cardenas J, Okawachi Y, Mohanty A, Fain R, et al.. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 2015, 6(16299
|
| [19] |
Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P, Brasch V, et al.. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nature Physics, 2017, 13(194-102
|
| [20] |
Zhang S, Silver J, Del Bino L, Copie F, Woodley M, Ghalanos G, et al.. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 2019, 6(2): 206-212
|
| [21] |
Riemensberger J, Lukashchuk A, Karpov M, Weng W, Lucas E, Liu J, et al.. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 2020, 581(7807): 164-170
|
| [22] |
Obrzud E, Rainer M, Harutyunyan A, Anderson M H, Liu J, Geiselmann M, et al.. A microphotonic astrocomb. Nature Photonics, 2019, 13(1): 31-35
|
| [23] |
Bao C, Yuan Z, Wu L, Suh M G, Wang H, et al.. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nature Communications, 2021, 12(1): 6573
|
| [24] |
Tan T, Yuan Z, Zhang H, Yan G, Zhou S, An N, et al.. Multispecies and individual gas molecule detection using stokes solitons in a graphene overmodal microresonator. Nature Communications, 2021, 12(16716
|
| [25] |
Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 2007, 445(7128627-630
|
| [26] |
Kues M, Reimer C, Lukens J M, Munro W J, Weiner A M, Moss D J, et al.. Quantum optical microcombs. Nature Photonics, 2019, 13(3): 170-179
|
| [27] |
Xue X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, et al.. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 2015, 9(9): 594-600
|
| [28] |
Lobanov V E, Lihachev G, Kippenberg T J, Gorodetsky M L. Frequency combs and platicons in optical microresonators with normal GVD. Optics Express, 2015, 23(6): 7713-7721
|
| [29] |
Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H P, Gorodetsky M L, et al.. Photonic chip-based optical frequency comb using soliton cherenkov radiation. Science, 2016, 351(6271): 357-360
|
| [30] |
Yang Q F, Yi X, Yang K Y, Vahala K. Stokes solitons in optical microcavities. Nature Physics, 2017, 13(1): 53-57
|
| [31] |
Cole D C, Lamb E S, Del’Haye P, Diddams S A, Papp S B. Soliton crystals in Kerr resonators. Nature Photonics, 2017, 11(10): 671-676
|
| [32] |
Yi X, Yang Q F, Yang K Y, Suh M G, Vahala K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2(12): 1078-1085
|
| [33] |
Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361(6402): eaan8083
|
| [34] |
Bruch A W, Liu X, Gong Z, Surya J B, Li M, Zou C L, et al.. Pockels soliton microcomb. Nature Photonics, 2021, 15(121-27
|
| [35] |
Liu X, Gong Z, Bruch A W, Surya J B, Lu J, Tang H X. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications, 2021, 12(1): 5428
|
| [36] |
Jung H, Stoll R, Guo X, Fischer D, Tang H X. Green, red, and IR frequency comb line generation from single IR pump in AIN microring resonator. Optica, 2014, 1(6396-399
|
| [37] |
Savchenkov A, Matsko A, Ilchenko V, Solomatine I, Seidel D, Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Physical Review Letters, 2008, 101: 093902
|
| [38] |
Grudinin I S, Yu N, Maleki L. Generation of optical frequency combs with a CaF2 resonator. Optics Letters, 2009, 34(7): 878-880
|
| [39] |
Qu Z, Liu X, Zhang C, Wang J, Wang Y, Pan Y, Qu J. Fabrication of an ultra-high quality MgF2 micro-resonator for a single soliton comb generation. Optics Express, 2023, 31(23005-3016
|
| [40] |
Liang W, Savchenkov A A, Matsko A B, Ilchenko V S, Seidel D, Maleki L. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator. Optics Letters, 2011, 36(12): 2290-2292
|
| [41] |
Zheng Y, Sun C, Xiong B, Wang L, Hao Z, Wang J, et al.. Integrated gallium nitride nonlinear photonics. Laser & Photonics Reviews, 2022, 16(1): 2100071
|
| [42] |
Wang C, Fang Z, Yi A, Yang B, Wang Z, Zhou L, et al.. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light: Science & Applications, 2021, 10: 139
|
| [43] |
Guidry M A, Lukin D M, Yang K Y, Trivedi R, Vučković J. Quantum optics of soliton microcombs. Nature Photonics, 2022, 16(152-58
|
| [44] |
Wang C, Li J, Yi A, Fang Z, Zhou L, Wang Z, et al.. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light: Science & Applications, 2022, 11: 341
|
| [45] |
Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, et al.. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568(7752373-377
|
| [46] |
Chang L, Xie W, Shu H, Yang Q F, Shen B, et al.. Ultra-efficient frequency comb generation in algaas-on-insulator microresonators. Nature Communications, 2020, 11(11331
|
| [47] |
Shu H, Chang L, Tao Y, Shen B, Xie W, Jin M, et al.. Microcomb-driven silicon photonic systems. Nature, 2022, 605(7910457-463
|
| [48] |
Wu L, Xie W, Chen H J, Colburn K, Xiang C, Chang L, et al.. AlGaAs soliton microcombs at room temperature. Optics Letters, 2023, 48(15): 3853-3856
|
| [49] |
Xia D, Yang Z, Zeng P, Zhang B, Wu J, Wang Z, et al.. Integrated chalcogenide photonics for microresonator soliton combs. Laser & Photonics Reviews, 2023, 17(3): 2200219
|
| [50] |
Wang Y, Zhang M, Shen Z, Xu G T, Niu R, Sun F W, et al.. Optomechanical frequency comb based on multiple nonlinear dynamics. Physical Review Letters, 2024, 132(16163603
|
| [51] |
Wilson D J, Schneider K, Hönl S, Anderson M, Baumgartner Y, Czornomaz L, et al.. Integrated gallium phosphide nonlinear photonics. Nature Photonics, 2020, 14(157-62
|
| [52] |
Wu P, Cheng W, Ding N, Tang X, Geng Z, Liu Z, et al.. Investigation of χ(2)-translated optical frequency combs tunability in gallium phosphide-on-insulator resonators. IEEE Photonics Journal, 2024, 16(2): 1-8
|
| [53] |
Wang C, Li Z, Riemensberger J, Lihachev G, Churaev M, Kao W, et al.. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 2024, 629(8013): 784-790
|
| [54] |
Cai J, Wang P Y, Li J, Chen B, Zhou L, Ke X, et al.. High-Q integrated lithium tantalate microring resonators for on-chip comb generation. Optics Letters, 2024, 49(20): 5921-5924
|
| [55] |
Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, et al.. Temporal solitons in optical microresonators. Nature Photonics, 2014, 8(2): 145-152
|
| [56] |
Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, et al.. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375-380
|
| [57] |
Papp S B, Beha K, Del’Haye P, Quinlan F, Lee H, Vahala K J, et al.. Microresonator frequency comb optical clock. Optica, 2014, 1(1): 10-14
|
| [58] |
Yang K Y, Beha K, Cole D C, Yi X, Del’Haye P, Lee H, et al.. Broadband dispersion-engineered microresonator on a chip. Nature Photonics, 2016, 10(5): 316-320
|
| [59] |
Lamb E, Carlson D, Hickstein D, Stone J, Diddams S, Papp S. Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum. Physical Review Applied, 2018, 9(2): 024030
|
| [60] |
Suh M G, Yi X, Lai Y H, Leifer S, Grudinin I S, Vasisht G, et al.. Searching for exoplanets using a microresonator astrocomb. Nature Photonics, 2019, 13(125-30
|
| [61] |
Armani D K, Kippenberg T J, Spillane S M, Vahala K J. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925-928
|
| [62] |
Fujii S, Tanabe T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics, 2020, 9(5): 1087-1104
|
| [63] |
Suzuki R, Kato T, Kobatake T, Tanabe T. Suppression of optomechanical parametric oscillation in a toroid microcavity assisted by a Kerr comb. Optics Express, 2017, 25(23): 28806-28816
|
| [64] |
Zhu S, Shi L, Ren L, Zhao Y, Jiang B, Xiao B, et al.. Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators. Nanophotonics, 2019, 8(12): 2321-2329
|
| [65] |
Webb K E, Erkintalo M, Coen S, Murdoch S G. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Optics Letters, 2016, 41(20): 4613
|
| [66] |
Li C H, Benedick A J, Fendel P, Glenday A G, Kärtner F X, Phillips D F, et al.. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature, 2008, 452(7187610-612
|
| [67] |
Yang Y, Zhao S, Shen Y, Meng L, Chen T, Huang Z, et al.. Transition from Kerr comb to Raman soliton comb in micro-rod resonator for broadband comb applications. IEEE Journal of Quantum Electronics, 2021, 57(6): 1-6
|
| [68] |
Pan J, Zhang B, Liu Z, Zhao J, Feng Y, Wan L, et al.. Microbubble resonators combined with a digital optical frequency comb for high-precision aircoupled ultrasound detectors. Photonics Research, 2020, 8(11): 303
|
| [69] |
Shu F, Zhang P, Qian Y, Wang Z, Wan S, Zou C, et al.. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Science China Physics, Mechanics & Astronomy, 2019, 63(5254211
|
| [70] |
Lu Q, Liu S, Wu X, Liu L, Xu L. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators. Optics Letters, 2016, 41(81736-1739
|
| [71] |
Jin X, Xu X, Gao H, Wang K, Xia H, Yu L. Controllable two-dimensional Kerr and Raman-Kerr frequency combs in microbottle resonators with selectable dispersion. Photonics Research, 2021, 9(2): 171
|
| [72] |
Yu S P, Cole D C, Jung H, Moille G T, Srinivasan K, Papp S B. Spontaneous pulse formation in edgeless photonic crystal resonators. Nature Photonics, 2021, 15(6461-467
|
| [73] |
Wildi T, Gaafar M A, Voumard T, Ludwig M, Herr T. Dissipative Kerr solitons in integrated Fabry-Perot microresonators. Optica, 2023, 10(6): 650
|
| [74] |
Dutt A, Joshi C, Ji X, Cardenas J, Okawachi Y, Luke K, et al.. On-chip dual-comb source for spectroscopy. Science Advances, 2018, 4(3e1701858
|
| [75] |
Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica, 2016, 3(4414-426
|
| [76] |
Yoshie T, Tang L, Su S Y. Optical microcavity: sensing down to single molecules and atoms. Sensors, 2011, 11(2): 1972-1991
|
| [77] |
Lukashchuk A, Riemensberger J, Stroganov A, Navickaite G, Kippenberg T J. Chaotic microcomb inertia-free parallel ranging. APL Photonics, 2023, 8(5): 056102
|
| [78] |
Yang Q F, Shen B, Wang H, Tran M, Zhang Z, Yang K Y, et al.. Vernier spectrometer using counterpropagating soliton microcombs. Science, 2019, 363(6430965-968
|
| [79] |
Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, et al.. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 2012, 6(7): 480-487
|
| [80] |
Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Physical Review A, 2010, 82(3): 033801
|
| [81] |
Hansson T, Modotto D, Wabnitz S. On the numerical simulation of Kerr frequency combs using coupled mode equations. Optics Communications, 2014, 312: 134-136
|
| [82] |
Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78(41135-1184
|
| [83] |
Coen S, Randle H G, Sylvestre T, Erkintalo M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Optics Letters, 2013, 38(1): 37-39
|
| [84] |
Barashenkov I V, Smirnov Y S. Existence and stability chart for the AC-driven, damped nonlinear Schrödinger solitons. Physical Review E, 1996, 54(5): 5707-5725
|
| [85] |
Yi X, Yang Q F, Yang K, Vahala K. Active capture and stabilization of temporal solitons in microresonators. Optics Letters, 2016, 41(9): 2037-2040
|
| [86] |
Joshi C, Jang J K, Luke K, Ji X, Miller S A, Klenner A, et al.. Thermally controlled comb generation and soliton modelocking in microresonators. Optics Letters, 2016, 41(11): 2565-2568
|
| [87] |
Shen B, Chang L, Liu J, Wang H, Yang Q F, Xiang C, et al.. Integrated turnkey soliton microcombs. Nature, 2020, 582(7812): 365-369
|
| [88] |
Yan M, Luo P L, Iwakuni K, Millot G, Hänsch T W, Picqué N. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light: Science & Applications, 2017, 6(10): e17076
|
| [89] |
Kowligy A S, Carlson D R, Hickstein D D, Timmers H, Lind A J, Schunemann P G, et al.. Mid-infrared frequency combs at 10 GHz. Optics Letters, 2020, 45(133677-3680
|
| [90] |
Zimmermann M, Gohle C, Holzwarth R, Udem T, Hänsch T W. Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation. Optics Letters, 2004, 29(3): 310-312
|
| [91] |
de Juan F, Zhang Y, Morimoto T, Sun Y, Moore J E, Grushin A G. Difference frequency generation in topological semimetals. Physical Review Research, 2020, 2(1): 012017
|
| [92] |
Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications. Communications Physics, 2019, 2(1153
|
| [93] |
Picqué N, Hänsch T. Frequency comb spectroscopy. Nature Photonics, 2019, 13(3146157
|
| [94] |
Verbiest G J, Rost M J. Beating beats mixing in heterodyne detection schemes. Nature Communications, 2015, 6(16444
|
| [95] |
Yu Z J, Han H N, Wei Z Y. Progress in dual-comb spectroscopy. Physics, 2014, 43(07460-467
|
| [96] |
Zhu Z, Wu G. Dual-comb ranging. Engineering, 2018, 4(6): 772-778
|
| [97] |
Coddington I, Swann W C, Newbury N R. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Physical Review A, 2010, 82(4): 043817
|
| [98] |
Ideguchi T, Poisson A, Guelachvili G, Picqué N, Hänsch T W. Adaptive real-time dual-comb spectroscopy. Nature Communications, 2014, 5(13375
|
| [99] |
Mehravar S, Norwood R A, Peyghambarian N, Kieu K. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Applied Physics Letters, 2016, 108(23231104
|
| [100] |
Schliesser A, Picqué N, Hänsch T W. Midinfrared frequency combs. Nature Photonics, 2012, 6(7440-449
|
| [101] |
Suh M G, Yang Q F, Yang K Y, Yi X, Vahala K J. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354(6312): 600-603
|
| [102] |
Miao R, Yin K, Zhang C, Yu Z, Cheng X, Jiang T. Stable soliton dual-microcomb generation via sideband thermal compensation for spectroscopy. Frontiers in Physics, 202210
|
| [103] |
Li J, Chang B, Du J, Tan T, Geng Y, Zhou H, et al.. Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. Science Advances, 2024, 10(3): eadf8666
|
| [104] |
Zhang C, Qu F, Ou P, Sun H, He S, Fu B. Recent advances and outlook in single-cavity dual comb lasers. Photonics, 2023, 10(2221
|
| [105] |
Yang Q F, Yi X, Yang K Y, Vahala K. Counter-propagating solitons in microresonators. Nature Photonics, 2017, 11(9560-564
|
| [106] |
Zhang H, Tan T, Chen H J, Yu Y, Wang W, Chang B, et al.. Soliton microcombs multiplexing using intracavity-stimulated Brillouin lasers. Physical Review Letters, 2023, 130(15): 153802
|
| [107] |
Qureshi P, Azeem F, Trainor L, Schwefel H, Coen S, Erkintalo M, et al.. Kerr microresonator dual-comb source with adjustable line-spacing. Optics Express, 2023, 31(2236236-36244
|
| [108] |
Wang B, Yang Z, Zhang X, Yi X. Vernier frequency division with dual-microresonator solitons. Nature Communications, 2020, 11(1): 3975
|
| [109] |
Li Z, Zhang H, Nguyen B, Luo S, Liu P, Zou J, et al.. A smart ring resonator-based sensor for multicomponent chemical analysis via machine learning. Photonics Research, 2020, 9(2B38-B44
|
| [110] |
Chen Q, Chen L, Fu Z, Xie S, Lu Q, Zhang X. Optical frequency comb-based aerostatic micro pressure sensor aided by machine learning. IEEE Sensors Journal, 2023, 23(18): 21078-21083
|
| [111] |
Villares G, Wolf J, Kazakov D, Süess M J, Hugi A, Beck M, et al.. On-chip dual-comb based on quantum cascade laser frequency combs. Applied Physics Letters, 2015, 107(25): 251104
|
| [112] |
Liu Y, Liu Q, Wang Q, Xiong L, Wang Z, Liu Y, et al.. Self-starting and repetition-rate-difference tunable dual combs in a bidirectional mode-locked fiber laser. Optics & Laser Technology, 2024, 177: 111178
|
| [113] |
Villares G, Hugi A, Blaser S, Faist J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nature Communications, 2014, 5(15192
|
| [114] |
Consolino L, Nafa M, De Regis M, Cappelli F, Garrasi K, Mezzapesa F P, et al.. Quantum cascade laser based hybrid dual comb spectrometer. Communications Physics, 2020, 3(169
|
| [115] |
Parriaux A, Komagata K N, Bertrand M, Wittwer V J, Faist J, Südmeyer T. Dual-comb interferometry for coherence analysis of tightly locked mid-infrared quantum cascade laser frequency combs. Advanced Photonics Research, 2024, 5(102400006
|
| [116] |
Komagata K N, Wittwer V J, Südmeyer T, Emmenegger L, Gianella M. Absolute frequency referencing for swept dual-comb spectroscopy with midinfrared quantum cascade lasers. Physical Review Research, 2023, 5(1013047
|
| [117] |
Yang J, Zhao X, Zhang L, Zheng Z. Single-cavity dual-comb fiber lasers and their applications. Frontiers in Physics, 2023, 10: 1070284
|
| [118] |
Hu D, Wu Z, Cao H, Shi Y, Li R, Tian H, et al.. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser. Optics Communications, 2021, 482: 126566
|
| [119] |
Qin Y, Cromey B, Batjargal O, Kieu K. Allfiber single-cavity dual-comb for coherent antistokes Raman scattering spectroscopy based on spectral focusing. Optics Letters, 2021, 46(1146-149
|
| [120] |
Wang Z, Nie Q, Sun H, Wang Q, Borri S, De Natale P, et al.. Cavity-enhanced photoacoustic dualcomb spectroscopy. Light: Science & Applications, 2024, 13: 11
|
| [121] |
Stokowski H S, Dean D J, Hwang A Y, Park T, Celik O T, McKenna T P, et al.. Integrated frequency-modulated optical parametric oscillator. Nature, 2024, 627(800295-100
|
| [122] |
Lambert N J, Trainor L S, Schwefel H G L. Microresonator-based electro-optic dual frequency comb. Communications Physics, 2023, 6(189
|
| [123] |
Long D A, Cich M J, Mathurin C, Heiniger A T, Mathews G C, Frymire A, et al.. Nanosecond time-resolved dual-comb absorption spectroscopy. Nature Photonics, 2024, 18(2127-131
|
| [124] |
Gomes A D, Bartelt H, Frazão O. Optical vernier effect: recent advances and developments. Laser & Photonics Reviews, 2021, 15(7): 2000588
|
| [125] |
Gohle C, Stein B, Schliesser A, Udem T, Hänsch T. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Physical Review Letters, 2007, 99(26263902
|
| [126] |
Sterczewski L A, Chen T L, Ober D C, Markus C R, Canedy C L, Vurgaftman I, et al.. Cavity-enhanced Vernier spectroscopy with a chip-scale mid-infrared frequency comb. ACS Photonics, 2022, 9(3994-1001
|
| [127] |
Wu K, O’Malley N P, Fatema S, Wang C, Girardi M, Alshaykh M S, et al.. Vernier microcombs for high-frequency carrier envelope offset and repetition rate detection. Optica, 2023, 10(5): 626-633
|
| [128] |
Li Q, Briles T C, Westly D A, Drake T E, Stone J R, Ilic B R, et al.. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4(2): 193-203
|
| [129] |
Del’Haye P, Coillet A, Fortier T, Beha K, Cole D C, Yang K Y, et al.. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nature Photonics, 2016, 10(8): 516-520
|
| [130] |
Spencer D T, Drake T, Briles T C, Stone J, Sinclair L C, Fredrick C, et al.. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557(7703): 81-85
|
| [131] |
Newman Z, Maurice V, Drake T, Stone J, Briles T, Spencer D, et al.. Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6(5): 680-685
|
| [132] |
Stern B, Ji X, Okawachi Y, Gaeta A L, Lipson M. Battery-operated integrated frequency comb generator. Nature, 2018, 562(7727): 401-405
|
| [133] |
Liu J, Raja A S, Karpov M, Ghadiani B, Pfeiffer M H P, Du B, et al.. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 2018, 5(10): 1347-1353
|
| [134] |
Wang Y, Yang C, Bao C. Vernier frequency locking in counterpropagating Kerr solitons. Physical Review Applied, 2023, 20(1): 014015
|
| [135] |
Lau E K, Wong L J, Wu M C. Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15: 618-633
|
| [136] |
Liang W, Ilchenko V S, Eliyahu D, Savchenkov A A, Matsko A B, Seidel D, et al.. Ultralow noise miniature external cavity semiconductor laser. Nature Communications, 2015, 6(17371
|
| [137] |
Hugi A, Villares G, Blaser S, Liu H C, Faist J. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492(7428229-233
|
| [138] |
Hillbrand J, Andrews A M, Detz H, Strasser G, Schwarz B. Coherent injection locking of quantum cascade laser frequency combs. Nature Photonics, 2019, 13(2): 101-104
|
| [139] |
Babaeian M, Nguyen D T, Demir V, Akbulut M, Blanche P A, Kaneda Y, et al.. A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers. Nature Communications, 2019, 10(1): 3516
|
| [140] |
Adler R. A study of locking phenomena in oscillators. Proceedings of the IRE, 1946, 34: 351-357
|
| [141] |
Wu Y, Duan B, Li C, Yang D. Multimode sensing based on optical microcavities. Frontiers of Optoelectronics, 2023, 16(129
|
| [142] |
Wu Y, Duan B, Song J, Tian H, Chen J, Yang D, et al.. Simultaneous temperature and pressure sensing based on a single optical resonator. Optics Express, 2023, 31(1218851-18861
|
| [143] |
Yang D Q, Chen J, Cao Q T, Duan B, Chen H J, Yu X C, et al.. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light: Science & Applications, 2021, 10: 128
|
| [144] |
Liao J, Yang L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light: Science & Applications, 2021, 10: 32
|
| [145] |
Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects. Science, 2015, 349(6245): 255-260
|
| [146] |
Hu D, Zou C, Ren H, Lu J, Le Z, Qin Y, et al.. Multi-parameter sensing in a multimode self-interference micro-ring resonator by machine learning. Sensors, 2020, 20(3709
|
| [147] |
Yan X, Zou X, Pan W, Yan L, Azaña J. Fully digital programmable optical frequency comb generation and application. Optics Letters, 2018, 43(2283-286
|
| [148] |
Bao Y, Yi X, Li Z, Chen Q, Li J, Fan X, et al.. A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time. Light: Science & Applications, 2015, 4(6): e300
|
| [149] |
Feng Y, Pan J, Sun D, Yang S, Fu Z, Wan L, et al.. On-chip self-referenced micro-resonators enhanced by digital optical frequency comb for ultrasensitive C-reactive protein detection. Journal of Lightwave Technology, 2022, 40(186303-6309
|
| [150] |
Yu M, Okawachi Y, Griffith A G, Lipson M, Gaeta A L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 2016, 3(8): 854-860
|
| [151] |
Yu M, Okawachi Y, Griffith A G, Picqué N, Lipson M, Gaeta A L. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nature Communications, 2018, 9(1): 1869
|
| [152] |
Yu M, Okawachi Y, Griffith A G, Lipson M, Gaeta A L. Microresonator-based high-resolution gas spectroscopy. Optics Letters, 2017, 42(214442-4445
|
| [153] |
Amiune N, Fan Z, Pankratov V V, Puzyrev D N, Skryabin D V, Zawilski K T, et al.. Mid-infrared frequency combs and staggered spectral patterns in χ(2) microresonators. Optics Express, 2023, 31(2): 907-915
|
| [154] |
Roy A, Ledezma L, Costa L, Gray R, Sekine R, Guo Q, et al.. Visible-to-mid-IR tunable frequency comb in nanophotonics. Nature Communications, 2023, 14: 6549
|
| [155] |
Hu Y, Yu M, Buscaino B, Sinclair N, Zhu D, Cheng R, et al.. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nature Photonics, 2022, 16(10): 679-685
|
| [156] |
Vollmer F, Yang L. Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 2012, 1(3–4267-291
|
| [157] |
Choi G, Gin A, Su J. Optical frequency combs in aqueous and air environments at visible to near-IR wavelengths. Optics Express, 2022, 30(6): 8690-8699
|
| [158] |
Saetchnikov A V, Tcherniavskaia E A, Saetchnikov V A, Ostendorf A. A laser written 4D optical microcavity for advanced biochemical sensing in aqueous environment. Journal of Lightwave Technology, 2020, 38(8): 2530-2538
|
| [159] |
Hermans A, Van Gasse K, Kuyken B. On-chip optical comb sources. APL Photonics, 2022, 7(10): 100901
|
| [160] |
Lee J, Kim Y J, Lee K, Lee S, Kim S W. Time-of-flight measurement with femtosecond light pulses. Nature Photonics, 2010, 4(10716-720
|
| [161] |
Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Optics Express, 2006, 14(13): 5954-5960
|
| [162] |
Zhu Z, Xu G, Ni K, Zhou Q, Wu G. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement. Optics Express, 2018, 26(5): 5747-5757
|
| [163] |
Suh M G, Vahala K J. Soliton microcomb range measurement. Science, 2018, 359(6378): 884-887
|
| [164] |
Lukashchuk A, Riemensberger J, Tusnin A, Liu J, Kippenberg T J. Chaotic microcomb-based parallel ranging. Nature Photonics, 2023, 17(9): 814-821
|
| [165] |
Trocha P, Karpov M, Ganin D, Pfeiffer M H P, Kordts A, Wolf S, et al.. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359(6378): 887-891
|
| [166] |
Wang J, Lu Z, Wang W, Zhang F, Chen J, Wang Y, et al.. Long-distance ranging with high precision using a soliton microcomb. Photonics Research, 2020, 8(12): 1964-1972
|
| [167] |
Wissmeyer G, Pleitez M A, Rosenthal A, Ntziachristos V. Looking at sound: optoacoustics with all-optical ultrasound detection. Light: Science & Applications, 2018, 7: 53
|
| [168] |
Zhang X, Fincke J R, Wynn C M, Johnson M R, Haupt R W, Anthony B W. Full noncontact laser ultrasound: first human data. Light: Science & Applications, 2019, 8: 119
|
| [169] |
Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, et al.. Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype. Medical Physics, 2007, 34(2): 773-85
|
| [170] |
Fehm T, Deán-Ben X L, Razansky D. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe. Applied Physics Letters, 2014, 105(17173505
|
| [171] |
Kotzé R, Ricci S, Birkhofer B, Wiklund J. Performance tests of a new non-invasive sensor unit and ultrasound electronics. Flow Measurement and Instrumentation, 2016, 48: 104-111
|
| [172] |
Deán-Ben X L, Pang G A, Montero de Espinosa F, Razansky D. Non-contact optoacoustic imaging with focused air-coupled transducers. Applied Physics Letters, 2015, 107(5051105
|
| [173] |
Guggenheim J A, Li J, Allen T J, Colchester R J, Noimark S, Ogunlade O, et al.. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nature Photonics, 2017, 11(11714-719
|
| [174] |
Rosenthal A, Razansky D, Ntziachristos V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Optics Letters, 2011, 36(10): 1833-1835
|
| [175] |
Wan L, Chandrahalim H, Chen C, Chen Q, Mei T, Oki Y, et al.. On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers. Applied Physics Letters, 2017, 111(6): 061109
|
| [176] |
Kim K H, Luo W, Zhang C, Tian C, Guo L J, Wang X, et al.. Air-coupled ultrasound detection using capillary-based optical ring resonators. Scientific Reports, 2017, 7(1109
|
| [177] |
Basiri-Esfahani S, Armin A, Forstner S, Bowen W P. Precision ultrasound sensing on a chip. Nature Communications, 2019, 10(1132
|
| [178] |
Lesko D M B, Timmers H, Xing S, Kowligy A, Lind A J, Diddams S A. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nature Photonics, 2021, 15(4281-286
|
| [179] |
Sohanpal R, Ren H, Shen L, Deakin C, Heidt A M, Hawkins T W, et al.. All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre. Nature Communications, 2022, 13(1): 3992
|
| [180] |
Kazakov D, Piccardo M, Wang Y, Chevalier P, Mansuripur T S, Xie F, et al.. Self-starting harmonic frequency comb generation in a quantum cascade laser. Nature Photonics, 2017, 11(12789-792
|
| [181] |
Consolino L, Nafa M, Cappelli F, Garrasi K, Mezzapesa F P, Li L, et al.. Fully phase-stabilized quantum cascade laser frequency comb. Nature Communications, 2019, 10(1): 2938
|
| [182] |
Lao C, Jin X, Chang L, Wang H, Lv Z, Xie W, et al.. Quantum decoherence of dark pulses in optical microresonators. Nature Communications, 2023, 14(11802
|
| [183] |
Zhu S, Shi L, Xiao B, Zhang X, Fan X. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics, 2018, 5(93794-3800
|
| [184] |
Zhu S, Wang W, Jiang B, Ren L, Shi L, Zhang X. Flexible manipulation of lasing modes in an erbium-doped microcavity via an add-drop configuration. ACS Photonics, 2021, 8(10): 3069-3077
|
| [185] |
Jiang B, Zhu S, Wang W, Li J, Dong C H, Shi L, et al.. Room-temperature continuous-wave upconversion white microlaser using a rare-earth-doped microcavity. ACS Photonics, 2022, 9(9): 2956-2962
|
| [186] |
Jiang B, Zhu S, Ren L, Shi L, Zhang X. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity. Advanced Photonics, 2022, 4(4046003
|
| [187] |
Zhang S, Bi T, Ghalanos G N, Moroney N P, Del Bino L, Del’Haye P. Dark-bright soliton bound states in a microresonator. Physical Review Letters, 2022, 128(3033901
|
| [188] |
Ling J, Gao Z, Xue S, Hu Q, Li M, Zhang K, et al.. Electrically empowered microcomb laser. Nature Communications, 2024, 15(14192
|
RIGHTS & PERMISSIONS
The Author(s)