Rapid 3D Photoacoustic Imaging Technique Based on Chalcogenide On-Chip Micro-Ring Sensor Array

Qiang Li , Ruifeng Zhong , Yi Xu , Luya Li , Shulin Deng , Shuixian Yang , Zhihao Fu , Chao Lu , Jingshun Pan , Jun Chen , Zhaohui Li

Photonic Sensors ›› 2025, Vol. 15 ›› Issue (4)

PDF
Photonic Sensors ›› 2025, Vol. 15 ›› Issue (4) DOI: 10.1007/s13320-025-0766-0
Regular
research-article

Rapid 3D Photoacoustic Imaging Technique Based on Chalcogenide On-Chip Micro-Ring Sensor Array

Author information +
History +
PDF

Abstract

Optical resonators are now essential in modern sensing applications, particularly in photoacoustic imaging technologies. Among these, three-dimensional photoacoustic computed tomography (3D-PACT) emerged as a significant area of research. This sophisticated technique involves two critical phases: first, the optical capture of acoustically scanned signals, and second, the optoelectrical demodulation of these acoustic responses. In this study, we present groundbreaking research on both facets and introduce a novel 3D-PACT system aimed at enhancing imaging performance. This system employs an array of 20 chalcogenide (Ge25Sb10S65) micro-ring resonators (MRRA) as the acoustic sensors, each micro-ring resonator featuring a radius of 20 µm and an average quality factor (Q-factor) of 5.5×105. Simultaneously, a digital optical frequency comb (DOFC) technique is introduced for parallel spectral detection and acoustic signal demodulation within the MRRA. By utilizing on-chip thermal electrodes to tune the resonance wavelengths of 20 micro-ring resonators, the DOFC method enables efficient parallel spectral demodulation of the MRRA, reducing the scanning time in the PACT by a factor of 20 compared to a single sensor. We demonstrate the performance of the 3D-PACT system using cross-sectional hair strands and leaf skeletons. The MRRA-based 3D-PACT system is a promising tool for structural, functional, and molecular imaging of deep biological tissues.

Keywords

Chalcogenide glasses / micro-ring resonators array / digital optical frequency comb / photoacoustic computed tomography

Cite this article

Download citation ▾
Qiang Li, Ruifeng Zhong, Yi Xu, Luya Li, Shulin Deng, Shuixian Yang, Zhihao Fu, Chao Lu, Jingshun Pan, Jun Chen, Zhaohui Li. Rapid 3D Photoacoustic Imaging Technique Based on Chalcogenide On-Chip Micro-Ring Sensor Array. Photonic Sensors, 2025, 15(4): DOI:10.1007/s13320-025-0766-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DasD, SharmaA, RajendranP, PramanikM. Another decade of photoacoustic imaging. Physics in Medicine Biology, 2021, 66505TR01.

[2]

FuQ R, ZhuR, SongJ B, YangH H, ChenX Y. Photoacoustic imaging: contrast agents and their biomedical applications. Advanced Materials, 2018, 3161805875.

[3]

LinL, WangL V. The emerging role of photoacoustic imaging in clinical oncology. Nature Reviews Clinical Oncology, 2022, 19(6): 365-384.

[4]

NeprokinA, BroadwayC, MyllyläT, BykovA, MeglinskiI. Photoacoustic imaging in biomedicine and life sciences. Life, 2022, 124588.

[5]

TaruttisA, NtziachristosV. Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photonics, 2015, 9(4): 219-227.

[6]

WangL V, YaoJ J. A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 2016, 13(8): 627-638.

[7]

ZhouY, YaoJ J, WangL V. Tutorial on photoacoustic tomography. Journal of Biomedical Optics, 2016, 216061007.

[8]

BrechtH P, SuR, FronheiserM, ErmilovS A, ConjusteauA, OraevskyA A. Whole-body three-dimensional optoacoustic tomography system for small animals. Journal of Biomedical Optics, 2009, 146064007.

[9]

LiL, ZhuL, MaC, LinL, YaoJ J, WangL D, et al.. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nature Biomedical Engineering, 2017, 150071.

[10]

LinL, TongX, HuP, InvernizziM, LaiL, WangL V. Photoacoustic computed tomography of breast cancer in response to neoadjuvant chemotherapy. Advanced Science, 2021, 872003396.

[11]

WinklerA M, MaslovK, WangL V. Noise-equivalent sensitivity of photoacoustics. Journal of Biomedical Optics, 2013, 189097003.

[12]

PreisserS, RohringerW, LiuM Y, KollmannC, ZotterS, FischerB, et al.. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging. Biomedical Optics Express, 2016, 7(10): 4171-4186.

[13]

GuggenheimJ A, LiJ, AllenT J, ColchesterR J, NoimarkS, OgunladeO, et al.. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nature Photonics, 2017, 11(11): 714-719.

[14]

JathoulA P, LauferJ, OgunladeO, TreebyB, CoxB, ZhangE, et al.. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nature Photonics, 2015, 9(4): 239-246.

[15]

ShnaidermanR, WissmeyerG, SeegerM, SolimanD, EstradaH, RazanskyD, et al.. Fiber interferometer for hybrid optical and optoacoustic intravital microscopy. Optica, 2017, 4(10): 1180-1187.

[16]

WissmeyerG, SolimanD, ShnaidermanR, RosenthalA, NtziachristosV. All-optical optoacoustic microscope based on wideband pulse interferometry. Optics Letters, 2016, 41(9): 1953-1956.

[17]

LiH, DongB, ZhangZ, ZhangH F, SunC. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Scientific Reports, 2014, 44496.

[18]

MaxwellA, HuangS W, LingT, KimJ S, AshkenaziS, GuoL J. Polymer microring resonators for high-frequency ultrasound detection and imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 191-197.

[19]

SongJ C, PanJ S, WanL, ChenZ S, ZhuY, YangZ L, et al.. Ultrasound measurement using on-chip optical micro-resonators and digital optical frequency comb. Journal of Lightwave Technology, 2020, 38(19): 5293-5301.

[20]

PanJ S, ZhangB, LiuZ Y, ZhaoJ X, FengY H, WanL, et al.. Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors. Photonics Research, 2020, 8(3): 303-310.

[21]

SunJ L, MengJ W, TangS J, LiC H. An encapsulated optical microsphere sensor for ultrasound detection and photoacoustic imaging. Science China Physics, Mechanics & Astronomy, 2021, 652224211.

[22]

ZhongX X, LiangY Z, WangX Y, LanH Y, BaiX, JinL, et al.. Free-moving-state microscopic imaging of cerebral oxygenation and hemodynamics with a photoacoustic fiberscope. Light: Science & Applications, 2024, 1315.

[23]

LiangY Z, FuW B, LiQ, ChenX L, SunH J, WangL D, et al.. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nature Communications, 2022, 1317604.

[24]

HazanY, LeviA, NagliM, RosenthalA. Silicon-photonics acoustic detector for optoacoustic micro-tomography. Nature Communications, 2022, 1311488.

[25]

ShnaidermanR, WissmeyerG, ÜlgenO, MustafaQ, ChmyrovA, NtziachristosV. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature, 2020, 585(7825): 372-378.

[26]

DingZ Q, SunJ L, LiC H, ShiY C. Broadband ultrasound detection using silicon micro-ring resonators. Journal of Lightwave Technology, 2023, 41(6): 1906-1910.

[27]

BaiX, QiY M, LiangY Z, MaJ, JinL, GuanB. Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor. Biomedical Optics Express, 2019, 10(5): 2504-2512.

[28]

LiangY Z, LiL X, LiQ, LiangH, JinL, WangL D, et al.. Photoacoustic computed tomography by using a multi-angle scanning fiber-laser ultrasound sensor. Optics Express, 2020, 28(6): 8744-8752.

[29]

RongQ Z, LeeY, TangY Q, VuT, TaboadaC, ZhengW H, et al.. High-frequency 3D photoacoustic computed tomography using an optical microring resonator. BME Frontiers, 2022, 20229891510.

[30]

CaoZ F, DaiS X, DingS J, WangM, XuL L, LiuC C, et al.. Chalcogenide glass ceramics: a high-performing innovative infrared acousto-optic material. Journal of the European Ceramic Society, 2021, 41(14): 7215-7221.

[31]

WuY F, RuanH H. Crystallization kinetics of chalcogenide glasses (ChG) probed via elastic vibration. Journal of Non-Crystalline Solids, 2024, 628122849.

[32]

DingS J, DaiS X, CaoZ F, LiuC C, WuJ H. Composition dependence of the physical and acousto-optic properties of transparent Ge-As-S chalcogenide glasses. Optical Materials, 2020, 108110175.

[33]

PanJ S, LiQ, FengY M, ZhongR F, FuZ H, YangS X, et al.. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography. Nature Communications, 2023, 1413250.

[34]

WangH Y, BakerC, KellyL, TovarP, ChenL, BaoX Y. Broadband ultrasound sensing based on fused dual-core chalcogenide-PMMA microfibers. Optics Express, 2022, 30(6): 8847-8856.

[35]

FanZ D, YanK L, ZhangL M, QinJ S, ChenJ B, WangR P, et al.. Design and fabrication of As2Se3 chalcogenide waveguides with low optical losses. Applied Optics, 2020, 59(6): 1564-1568.

[36]

WeiW, LuX, PangF F, WeiH M, ZhangL, WangT Y. Fabrication and characterization of low-loss Gaussian-like reversed ridge optical waveguides. IEEE Photonics Technology Letters, 2022, 34(12): 649-652.

[37]

HosseiniE S, YegnanarayananS, AtabakiA H, SoltaniM, AdibiA. Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths. Optics Express, 2010, 18(3): 2127-2136.

[38]

ZhangY J, ZhongK Y, ZhouX T, TsangH K. Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers. Nature Communications, 2022, 1313534.

[39]

LinD S, ZhuangX F, WongS H, KupnikM, Khuri-YakubB T. Encapsulation of capacitive micromachined ultrasonic transducers using viscoelastic polymer. Journal of Microelectromechanical Systems, 2010, 19(6): 1341-1351.

[40]

WesterveldW J, Mahmud-Ul-HasanM, ShnaidermanR, NtziachristosV, RottenbergX, SeveriS, et al.. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nature Photonics, 2021, 15(5): 341-345.

[41]

LeeD, ParkE Y, ChoiS, KimH, MinJ, LeeC, et al.. GPU-accelerated 3D volumetric X-ray-induced acoustic computed tomography. Biomedical Optics Express, 2020, 11(2): 752-761.

[42]

XuM H, WangL V. Universal back-projection algorithm for photoacoustic computed tomography. Physical Review E, 2005, 711016706.

[43]

XieZ X, ChenS L, LingT, GuoL J, CarsonP L, WangX D. Pure optical photoacoustic microscopy. Optics Express, 2011, 19(10): 9027-9034.

[44]

WangL V, HuS. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 2012, 335(6075): 1458-1462.

[45]

RungeP, ZhouG, BeckerwerthT, GanzerF, KeyvaniniaS, SeifertS, et al.. Waveguide integrated balanced photodetectors for coherent receivers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 1-7.

[46]

ChenG, ChenM, ChenW, YinL D, ZhangL, XiD S, et al.. Hardware-efficient generation and reception of NHS-OFDM signal for direct-detection PON. Optics Communications, 2022, 508127721.

[47]

PanQ Y, HuangX C, MinR, LiuW P. Fast frame synchronization design and FPGA Implementation in SF-BOTDA. Photonics, 2020, 7117.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/