Use of a Tailor-Made Fiber-Bragg-Grating Patch for Separation of Superimposing Load Cases in a Filament-Wound Composite-Drill Tube

Jannik Summa , Moritz Kurkowski , Sebastian Michel , Dirk Biermann , Markus Stommel , Hans-Georg Herrmann

Photonic Sensors ›› 2025, Vol. 15 ›› Issue (4) : 250431

PDF
Photonic Sensors ›› 2025, Vol. 15 ›› Issue (4) : 250431 DOI: 10.1007/s13320-025-0761-5
Regular
research-article

Use of a Tailor-Made Fiber-Bragg-Grating Patch for Separation of Superimposing Load Cases in a Filament-Wound Composite-Drill Tube

Author information +
History +
PDF

Abstract

In many structural components, a major interest lies on the monitoring of the exact condition of a component or the loads acting on it for which sensors are an important tool. The usage of fiber-Bragg-grating (FBG) sensors has many advantages considering sensor embedment and strain measurement in fiber reinforced composites. However, the direct calculation of applied loads based on the measured strain is impeded when FBG sensors are integrated conventionally, mainly due to parasitic effects from the cross coupling of axial and torsional strains. The presented work introduces an FBG patch produced in tailored fiber placement. A calculation approach is presented, which allows the calculation of superimposed loads from the FBG-strain while compensating for temperature and cross coupling effects. Experimental data from the use case of boring & trepanning association (BTA) deep hole drilling are presented to verify the calculation approach for the sensor patch and show vastly improved measurement accuracy compared to the conventional FBG integration.

Keywords

Fiber-Bragg-grating sensors / strain measurement / real-time condition monitoring / composite / sensor placement / orthotropic material behavior / drilling application

Cite this article

Download citation ▾
Jannik Summa, Moritz Kurkowski, Sebastian Michel, Dirk Biermann, Markus Stommel, Hans-Georg Herrmann. Use of a Tailor-Made Fiber-Bragg-Grating Patch for Separation of Superimposing Load Cases in a Filament-Wound Composite-Drill Tube. Photonic Sensors, 2025, 15(4): 250431 DOI:10.1007/s13320-025-0761-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ramakrishnan M, Rajan G, Semenova Y, Farrell G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors, 2016, 16(1): 99.

[2]

Di Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors, 2015, 15(8): 18666-18713.

[3]

K. Hsu, A. Csipkes, and T. Jin, Small-diameter thin FBGs ideally suited for embedded sensing in composites, [Online]. Available, https://www.semanticscholar.org/paper/Small-Diameter-Thin-FBGs-Ideally-Suited-for-Sensing-Hsu-Csipkes/308ff5c48f563b4eac497029eb8252d9beaabc1a.

[4]

Beukema R P. Embedding technologies of FBG sensors in composites: technologies, applications and practical use. 6th European Workshop on Structural Health Monitoring, 20121-8

[5]

T. Li, J. Guo, Y. Tan, and Z. Zhou, “Recent advances and tendency in fiber Bragg grating-based vibration sensor: a review,” IEEE Sensors Journal, 20(20): 12074–12087.

[6]

Schukar V, Baitinger E, Mewis F, Kusche N. Temperature self-compensation of integrated fiber-Bragg-grating strain sensors for condition monitoring of high-performance composite materials. German Society for Non-Destructive Testing Annual Meeting, Potsdam, 20142014-034ga

[7]

Nicolas M J, W. Sullivan R, Richards W L. Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing. Aerospace, 2016, 3(3): 18.

[8]

Rapp S, Kang L H, Han J H, Mueller U C, Baier H. Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors. Smart Materials and Structures, 2009, 18(2): 25006.

[9]

Kim H I, Kang L H, Han J H. Shape estimation with distributed fiber Bragg grating sensors for rotating structures. Smart Materials and Structures, 2011, 20(3): 35011.

[10]

Xu R, Yurkewich A, Patel R V. Shape sensing for torsionally compliant concentric-tube robots. Proceedings of SPIE, 2016, 9702: 97020V.

[11]

Yi X, Chen X, Fan H, Shi F, Cheng X, Qian J. Separation method of bending and torsion in shape sensing based on FBG sensors array. Optics Express, 2020, 28(7): 9367-9383.

[12]

Kang D H, Kim C U, Kim C G. The embedment of fiber Bragg grating sensors into filament wound pressure tanks considering multiplexing. NDT & E International, 2006, 39(2): 109-116.

[13]

Liu X, Jin B, Bai Q, Wang Y, Wang D, Wang Y. Distributed fiber-optic sensors for vibration detection. Sensors, 2016, 16(8): 1164.

[14]

Yang Y, Wang E, Chen K, Yu Z, Yu Q. Fiber-optic Fabry-Perot sensor for simultaneous measurement of tilt angle and vibration acceleration. IEEE Sensors Journal, 2019, 19(6): 2162-2169.

[15]

Ciminello M, de Fenza A, Dimino I, Pecora R. Skin-spar failure detection of a composite winglet using FBG sensors. Archive of Mechanical Engineering, 2017, 64(3): 287-300.

[16]

Mittelstedt C, Becker WStructural mechanics of planar laminates (Strukturmechanik ebener Laminate), 2016DarmstadtMechanical Department, Technical University Darmstadt

[17]

Schmidt R, Strodick S, Walther F, Biermann D, Zabel A. Tool design for the integration of piezoelectric and micro magnetic sensors to realize in-process measurements in BTA deep hole drilling. Procedia CIRP, 2023, 119: 408-413.

[18]

Steininger A, Bleicher F. In-process monitoring and analysis of dynamic disturbances in boring and trepanning association (BTA) deep drilling. Journal of Machine Engineering, 2018, 18(4): 47-59.

[19]

Stockert R. Spin effects in deep hole drilling (Dralleffekte beim Tiefbohren). VDI-Reports, 1977DusseldorfVDI Verlag GmbH73-80

[20]

Biermann D, Bleicher F, Heisel U, Klocke F, Mohring H C, Shih A. Deep hole drilling. CIRP Annals, 2018, 67(2): 673-694.

[21]

Webber O. Investigations into the process dynamics of deep hole drilling with BTA drilling, depending on the drilling depth (Untersuchungen zur bohrtiefenabhangigen Prozessdynamik beim BTA-Tiefbohren). Ph.D. dissertation, 2007DortmundTechnical University Dortmund

[22]

Bergmann K. Friction of guide rails during deep drilling (Reibung von Fuhrungsleisten beim Tiefbohren). International Journal for Practical Metalworking, 198126-29

[23]

Yun Hwang H, Kook Kim J. Design and manufacture of a carbon fiber epoxy rotating boring bar. Composite Structures, 2003, 60(1): 115-124.

[24]

Kurkowski M, Michel S, Summe J, Stommel M, Herrmann H-G, Biermann D. Self-damping drilling tool: reduce and monitor process vibrations by using composites. CU Reports, 2021

[25]

Michel S, Biermann D, Kurkowski M, Spickenheuer A, Stommel M, Summe J. et al.. FKV-Bohrrohre mit strukturintegrierter Sensorik/ vibration damping and process monitoring in BTA deep hole drilling using fiber composites - FRP drill tubes with structure-integrated sensors. Werkstattstechnik Online, 2021, 111(11–12): 846-850.

[26]

Michel S, Kurkowski M, Fuß M, Biermann D, Stommel MBehrens B A, Brosius A, Drossel W G, Hintze W, Ihlenfeldt S, Nyhuis P. Lightweight FRP drill tubes for vibration damping in BTA deep hole drilling. Production at the Leading Edge of Technology, 2022ChamSpringer International Publishing221-229.

[27]

Hernández-Moreno H, Collombet F, Douchin B, Choqueuse D, Davies P, González Velázquez J L. Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: I. adapted tooling and instrumented specimen. Applied Composite Materials, 2009, 16: 173-182.

[28]

Oromiehie E, Prusty B G, Rajan G, Compston P. Optical fiber Bragg grating sensors for process monitoring in advanced composites. 2016 IEEE Sensors Applications Symposium, Catania, 20161-5

[29]

Summa J, Michel S, Kurkowski M, Biermann D, Stommel M, Herrmann H G. Process monitoring of a vibration dampening CFRP drill tube in BTA deep hole drilling using Fibre-Bragg-Grating Sensors. Procedia CIRP, 2022, 115: 119-124.

[30]

Ito M, Chou T W. an analytical and experimental study of strength and failure behavior of plain weave composites. Journal of Composite Materials, 1998, 32(1): 2-30.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/