Magnetostrictive-Assisted Whispering Gallery Mode Sensors

Jianqing Guan , Zhenning Yang , Hang Yu , Zhe Wang , Xiaohe Tang , Qianchuan Zhao , Chuan Wang , Guangming Zhao , Ming Li , Jing Zhang

Photonic Sensors ›› 2025, Vol. 15 ›› Issue (3) : 250316

PDF
Photonic Sensors ›› 2025, Vol. 15 ›› Issue (3) : 250316 DOI: 10.1007/s13320-025-0760-6
Regular

Magnetostrictive-Assisted Whispering Gallery Mode Sensors

Author information +
History +
PDF

Abstract

Whispering gallery mode (WGM) microresonators emerged as a promising platform for highly sensitive sensing applications due to their high-quality factors and small mode volumes. They offer the advantages of the ultrahigh sensitivity and compact size, rendering them suitable across multiple fields. A stable encapsulation process is essential for practical applications to establish a reliable coupling system between the microcavity and its waveguide coupler, especially for the microtoroidal resonator and tapered fiber coupler. However, adjusting the coupling coefficient after the packaging process poses challenges, thereby compromising coupling accuracy and limiting its range of applications. It is imperative to provide a platform of tunable coupling for packaged WGM resonators. Here, we provide an approach for leveraging the magnetostrictive effect to dynamically regulate the fiber-cavity coupling, enabling the measurement of the magnetic field as an example. Moreover, we show the fine-tuning of coupling within the packaged WGM microresonator, allowing the precision control of the optomechanical effect. Through this method, a tunable coupling platform in a packaged system is realized, opening up new dimensions of research in various fields.

Keywords

WGM / magnetic field sensing / optomechanics

Cite this article

Download citation ▾
Jianqing Guan, Zhenning Yang, Hang Yu, Zhe Wang, Xiaohe Tang, Qianchuan Zhao, Chuan Wang, Guangming Zhao, Ming Li, Jing Zhang. Magnetostrictive-Assisted Whispering Gallery Mode Sensors. Photonic Sensors, 2025, 15(3): 250316 DOI:10.1007/s13320-025-0760-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Javerzac-GalyC, PlekhanovK, BernierN R, TothL D, FeofanovA K, KippenbergT J. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Physical Review A, 2016, 945053815.

[2]

RuedaA, SedlmeirF, CollodoM C, VoglU, StillerB, SchunkG, et al. . Efffcient microwave to optical photon conversion: an electro-optical realization. Optica, 2016, 36597-604.

[3]

RuedaA, SedlmeirF, KumariM, LeuchsG, SchwefelH G L. Resonant electro-optic frequency comb. Nature, 2019, 5687752378-381.

[4]

LinJ, FarajollahiS, FangZ W, YaoN, GaoR H, GuanJ L, et al. . Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Advanced Photonics, 2022, 43036001.

[5]

WangJ, ZhuB W, HaoZ Z, BoF, WangX L, GaoF, et al. . Thermo-optic effects in on-chip lithium niobate microdisk resonators. Optics Express, 2016, 241921869-21879.

[6]

MaT, YuanJ H, LiF, SunL, KangZ, YanB B. Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability. IEEE Photonics Journal, 2018, 1021-12

[7]

KippenbergT J, RokhsariH, CarmonT, SchererA, VahalaK J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Physical Review Letters, 2005, 953033901.

[8]

RokhsariH, KippenbergT J, CarmonT, VahalaK J. Radiation-pressure-driven micromechanical oscillator. Optics Express, 2005, 13145293-5301.

[9]

CarmonT, RokhsariH, YangL, KippenbergT J, VahalaK J. Temporal behavior of radiation-pressureinduced vibrations of an optical microcavity phonon mode. Physical Review Letters, 2005, 9422223902.

[10]

KippenbergT J, VahalaK J. Cavity optomechanics: back-action at the mesoscale. Science, 2008, 32158931172-1176.

[11]

AspelmeyerM, KippenbergT J, MarquardtF. Cavity optomechanics. Reviews of Modern Physics, 2014, 8641391.

[12]

IoppoloT, KozhevnikovM, StepaniukV, ÖtügenM V, SheverevV. Micro-optical force sensor concept based on whispering gallery mode resonators. Applied Optics, 2008, 47163009-3014.

[13]

GuhaB, AllainP E, LemaêtreA, LeoG, FaveroI. Force sensing with an optomechanical self-oscillator. Physical Review Applied, 2020, 142024079.

[14]

XuX Y, ChenW J, ZhaoG M, LiY H, LuC Y, YangL. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light: Science & Applications, 2018, 7: 62.

[15]

LiaoJ, YangL. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light: Science & Applications, 2021, 10: 32.

[16]

LiB B, WangQ Y, XiaoY F, JiangX F, LiY, XiaoL X, et al. . On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator. Applied Physics Letters, 2010, 9625251109.

[17]

AnN, LiY W, ZhangH, LiangY P, TanT, GuoY Z, et al. . Brillouin lasers in a graphene microresonator for multispecies and individual gas molecule detection. APL Photonics, 2023, 8: 100801.

[18]

GuoY H, LiZ Y, AnN, GuoY Z, WangY C, YuanYS, et al. . A monolithic graphene-functionalized microlaser for multispecies gas detection. Advanced Materials, 2022, 34512207777.

[19]

TanT, YuanZ Y, ZhangH, YanG F, ZhouS Y, AnN, et al. . Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 2021, 1216716.

[20]

ZhiY Y, YuX C, GongQ H, YangL, XiaoY F. Single nanoparticle detection using optical microcavities. Advanced Materials, 2017, 29121604920.

[21]

JiangX F, QaviA J, HuangS H, YanL. Whispering-gallery sensors. Matter, 2020, 32371-392.

[22]

ShenB Q, YuX C, ZhiY Y, WangL, KimD, GongQ H, et al. . Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity. Physical Review Applied, 2016, 52024011.

[23]

ForstnerS, PramsS, KnittelJ, van OoijenE D, SwaimJ D, HarrisG I, et al. . Cavity optomechanical magnetometer. Physical Review Letters, 2012, 10812120801.

[24]

ForstnerS, SheridanE, KnittelJ, HumphreysC L, BrawleyG A, Rubinsztein-DunlopH, et al. . Ultrasensitive optomechanical magnetometry. Advanced Materials, 2014, 26366348-6353.

[25]

ZhuJ G, ZhaoG M, SavukovI, YangL. Polymer encapsulated microcavity optomechanical magnetometer. Scientific Reports, 2017, 718896.

[26]

LiB B, BilekJ, HoffU B, MadsenL S, ForstnerS, PrakashV, et al. . Quantum enhanced optomechanical magnetometry. Optica, 2018, 57850-856.

[27]

LiB B, BrawleyG, GreenallH, ForstnerS, SheridanE, Rubinsztein-DunlopH, et al. . Ultrabroadband and sensitive cavity optomechanical magnetometry. Photonics Research, 2020, 871064-1071.

[28]

CaiM, PainterO, VahalaK J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Physical Review Letters, 2000, 85174.

[29]

SpillaneS M, KippenbergT J, PainterO J, VahalaK J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Physical Review Letters, 2003, 914043902.

[30]

ZhaoG M, ÖzdemirŞ K K, WangT, XuL H, KingE, LongG L, et al. . Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator. Science Bulletin, 2017, 6212875-878.

[31]

YangD Q, DuanB, WangA Q, PanY J, WangC, JiY F. Packaged microbubble resonator for versatile optical sensing. Journal of Lightwave Technology, 2020, 38164555-4559.

[32]

TuX, WangY X, GuoZ H, ChenZ M, HuangT Y, WuX. Underwater acoustic wave detection based on packaged optical microbubble resonator. Journal of Lightwave Technology, 2022, 40186272-6279.

[33]

SunJ L, MengJ W, TangS J, LiC H. An encapsulated optical microsphere sensor for ultrasound detection and photoacoustic imaging. Science China Physics, Mechanics & Astronomy, 2022, 652224211.

[34]

DongY C, ZengX L, WangJ B, LiY K, CaiN, WangH. Large-range and high-sensitivity displacement sensing based on a snap microresonator by multimode encoding technique. Measurement Science and Technology, 2023, 349095122.

[35]

DongY C, WangK Y, JinX Y. Packaged microsphere-taper coupling system with a high Q factor. Applied optics, 2015, 542277-284.

[36]

WardJ M, FeronP, ChormaicS N. A taper-fused microspherical laser source. IEEE Photonics Technology Letters, 2008, 206392-394.

[37]

YanY Z, ZouC L, YanS B, SunF W, JiZ, LiuJ, et al. . Packaged silica microsphere-taper coupling system for robust thermal sensing application. Optics Express, 2011, 1975753-5759.

[38]

LiB B, BullaD, PrakashV, ForstnerS, Dehghan-ManshadiA, Rubinsztein-DunlopH, et al. . Invited article: Scalable high-sensitivity optomechanical magnetometers on a chip. APL Photonics, 2018, 312120806.

[39]

ArmaniD K, KippenbergT J, SpillaneS M, VahalaK J. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925-928.

[40]

RowlandD, LoveJ D. Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proceedings J (Optoelectronics), 1993, 1403177-188.

[41]

GorodetskyM L, IlchenkoV S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. Journal of the Optical Society of America B, 1999, 161147-154.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/