Enhancing Gas Diffusion in Antiresonant Hollow-Core Fiber Gas Sensors Using Microchannels

Paweł Kozioł , Piotr Bojęś , Piotr Jaworski , Dakun Wu , Fei Yu , Karol Krzempek

Photonic Sensors ›› 2025, Vol. 15 ›› Issue (3) : 250336

PDF
Photonic Sensors ›› 2025, Vol. 15 ›› Issue (3) :250336 DOI: 10.1007/s13320-025-0753-5
Regular
research-article

Enhancing Gas Diffusion in Antiresonant Hollow-Core Fiber Gas Sensors Using Microchannels

Author information +
History +
PDF

Abstract

In this paper, we analyze the performance of diffusion-based gas distribution in antiresonant hollow-core fiber-based gas absorption cells. Performed theoretical analysis was based on Fick’s second law using the OpenFOAM® software and finite volume method (FVM), followed by an experimental verification of the obtained simulations. The diffusion time was tested for a 1.25 m long fiber, with laser-micromachined microchannels. Full analysis of the correlation between the microchannel count, position, and separation on the rate at which the fiber-based gas cell was filled with the target gas was presented. Experimental results showed that with the proper microchannel configuration, the purely-diffusion-based gas exchange time in the 1.25 m fiber could be reduced from 6 h, down to 330 s. Obtained results correlated with the simulations, giving perspective for the development and implementation of novel miniaturized passively filled gas absorption cells for compact laser spectrometers.

Keywords

Optical fiber sensor / antiresonant hollow core fibers / gas diffusion measurement / microchannel / side-slot

Cite this article

Download citation ▾
Paweł Kozioł, Piotr Bojęś, Piotr Jaworski, Dakun Wu, Fei Yu, Karol Krzempek. Enhancing Gas Diffusion in Antiresonant Hollow-Core Fiber Gas Sensors Using Microchannels. Photonic Sensors, 2025, 15(3): 250336 DOI:10.1007/s13320-025-0753-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du Z, Zhang S, Li J, Gao N, Tong K. Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review. Applied Sciences, 2019, 9(2): 338.

[2]

Farooq A, Alquaity A B S, Raza M, Nasir E F, Yao S, Ren W. Laser sensors for energy systems and process industries: perspectives and directions. Progress in Energy and Combustion Science, 2022, 91: 100997.

[3]

Lopez-Torres D, Elosua C, Arregui F J. Optical fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds – a review. Sensors, 2020, 20(9): 2555

[4]

Wang L, Cheng Y, Gopalan S, Luo F, Amreen K, Singh R K, et al. . Review and perspective: gas separation and discrimination technologies for current gas sensors in environmental applications. ACS Sensors, 2023, 8(4): 1373-1390.

[5]

Yu Y, Sanchez N P, Griffin R J, Tittel F K. CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy. Optics Express, 2016, 24(10): 10391-10401.

[6]

Zheng C, Pi M, Song F, Li Y, Peng Z, Guan G, et al. . Recent progress in infrared absorption spectroscopy for gas sensing with discrete optics, hollow-core fibers and on-chip waveguides. Journal of Lightwave Technology, 2023, 41(13): 4079-4096.

[7]

Tuzson B, Graf M, Ravelid J, Scheidegger P, Kupferschmid A, Looser H, et al. . A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones. Atmospheric Measurement Techniques, 2020, 13(9): 4715-4726.

[8]

Liu Z, Zheng C, Zhang T, Li Y, Ren Q, Chen C, et al. . Midinfrared sensor system based on tunable laser absorption spectroscopy for dissolved carbon dioxide analysis in the south China sea: system-level integration and deployment. Analytical Chemistry, 2020, 92(12): 8178-8185.

[9]

Liu K, Wang L, Tan T, Wang G, Zhang W, Chen W, et al. . Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sensors and Actuators B: Chemical, 2015, 220: 1000-1005.

[10]

Hudzikowski A, Głuszek A, Krzempek K, Sotor J. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Optics Express, 2021, 29(16): 26127-26136.

[11]

Harrington J A, Rabii C, Gibson D. Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 948-953.

[12]

Marcatili E A J, Schmeltzer R A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell System Technical Journal, 1964, 43(4): 1783-1809.

[13]

Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J, et al. . Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539.

[14]

Jin W, Xuan H F, Ho H L. Sensing with hollow-core photonic bandgap fibers. Measurement Science and Technology, 2010, 21(9): 094014

[15]

Hald J, Petersen J C, Henningsen J. Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers. Physical Review Letters, 2007, 98(21): 213902

[16]

Yu R, Chen Y, Shui L, Xiao L. Hollow-core photonic crystal fiber gas sensing. Sensors, 2020, 20(10): 2996

[17]

Li J, Yan H, Dang H, Meng F. Structure design and application of hollow core microstructured optical fiber gas sensor: a review. Optics & Laser Technology, 2021, 135: 106658.

[18]

Pryamikov A D, Biriukov A S, Kosolapov A F, Plotnichenko V G, Semjonov S L, Dianov E M. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >35µm. Optics Express, 2011, 19(2): 1441-1448.

[19]

Bufetov I, Kosolapov A, Pryamikov A, Gladyshev A, Kolyadin A, Krylov A, et al. . Revolver hollow core optical fibers. Fibers, 2018, 6(2): 39.

[20]

Jaworski P, Kozioł P, Krzempek K, Wu D, Yu F, Bojęś P, et al. . Antiresonant hollow-core fiber-based dual gas sensor for detection of methane and carbon dioxide in the near-and mid-infrared regions. Sensors, 2020, 20(14): 3813

[21]

Krzempek K, Jaworski P, Kozioł P, Belardi W. Antiresonant hollow core fiber-assisted photothermal spectroscopy of nitric oxide at 5.26 µm with parts-per-billion sensitivity. Sensors and Actuators B: Chemical, 2021, 345: 130374.

[22]

Hu M, Ventura A, Hayashi J G, Poletti F, Ren W. Mid-infrared absorption spectroscopy of ethylene at 10.5 µm using a chalcogenide hollow-core antiresonant fiber. Optics & Laser Technology, 2023, 158: 108932.

[23]

Jaworski P, Wu D, Yu F, Krzempek K. Direct performance comparison of antiresonant and Kagome hollow-core fibers in mid-IR wavelength modulation spectroscopy of ethane. Optics Express, 2023, 31(15): 24810-24820.

[24]

Krzempek K, Abramski K, Nikodem M. Kagome hollow core fiber-based mid-infrared dispersion spectroscopy of methane at sub-ppm levels. Sensors, 2019, 19(15): 3352

[25]

Zhao P, Ho H L, Jin W, Fan S, Gao S, Wang Y. Hollow-core fiber photothermal methane sensor with temperature compensation. Optics Letters, 2021, 46(11): 2762

[26]

Hu M, Ventura A, Hayashi J G, Poletti F, Yao S, Ren W. Trace gas detection in a hollow-core antiresonant fiber with heterodyne phase-sensitive dispersion spectroscopy. Sensors and Actuators B: Chemical, 2022, 363: 131774.

[27]

Wang Q, Wang Z, Zhang H, Jiang S, Wang Y, Jin W, et al. . Dual-comb photothermal spectroscopy. Nature Communications, 2022, 13(1): 2181

[28]

Tomaszewska-Rolla D, Jaworski P, Wu D, Yu F, Foltynowicz A, Krzempek K, et al. . Mid-infrared optical frequency comb spectroscopy using an all-silica antiresonant hollow-core fiber. Optics Express, 2024, 32(6): 10679-10689.

[29]

Yao C, Gao S, Wang Y, Wang P, Jin W, Ren W. Silica hollow-core negative curvature fibers enable ultrasensitive mid-infrared absorption spectroscopy. Journal of Lightwave Technology, 2020, 38(7): 2067-2072.

[30]

Nikodem M, Krzempek K, Dudzik G, Abramski K. Hollow core fiber-assisted absorption spectroscopy of methane at 34 µm. Optics Express, 2018, 26(17): 21843-21848.

[31]

Gomółka G, Stępniewski G, Pysz D, Buczyński R, Klimczak M, Nikodem M. Highly sensitive methane detection using a mid-infrared interband cascade laser and an anti-resonant hollow-core fiber. Optics Express, 2023, 31(3): 3685-3697.

[32]

Jaworski P, Krzempek K, Kozioł P, Wu D, Yu F, Bojęś P, et al. . Sub parts-per-billion detection of ethane in a 30-meters long mid-IR antiresonant hollow-core fiber. Optics & Laser Technology, 2022, 147: 107638.

[33]

Hoo Y L, Jin W, Ho H L, Ju J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators B: Chemical, 2005, 105(2): 183-186.

[34]

Hoo Y L, Jin W, Shi C, Ho H L, Wang D N, Ruan S C. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509-3515.

[35]

Carvalho J P, Lehmann H, Bartelt H, Magalhães F, Amezcua-Correa R, Santos J L, et al. . Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. Journal of Sensors, 2009, 2009: 1-10.

[36]

Parry J P, Griffiths B C, Gayraud N, McNaghten E D, Parkes A M, MacPherson W N, et al. . Towards practical gas sensing with micro-structured fibres. Measurement Science and Technology, 2009, 20(7): 075301

[37]

Van Brakel A, Grivas C, Petrovich M N, Richardson D J. Micro-channels machined in microstructured optical fibers by femtosecond laser. Optics Express, 2007, 15(14): 8731-8736.

[38]

Hensley C, Broaddus D H, Schaffer C B, Gaeta A L. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Optics Express, 2007, 15(11): 6690-6695.

[39]

Yang F, Jin W, Cao Y, Ho H L, Wang Y. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Optics Express, 2014, 22(20): 24894-24907.

[40]

Li X, Liang J, Oigawa H, Ueda T. Doubled optical path length for photonic bandgap fiber gas cell using micromirror. Japanese Journal of Applied Physics, 2011, 50(6S): 06GM01.

[41]

Amanzadeh M, Aminossadati S M, Kizil M S, Sheridan E, Bowen W P. A microfabricated fibre optic sensor for methane gas measurement in underground coal mines. 2012 Photonics Global Conference (PGC), 20121-5

[42]

Yang F, Jin W, Lin Y, Wang C, Lut H, Tan Y. Hollow-core microstructured optical fiber gas sensors. Journal of Lightwave Technology, 2017, 35(16): 3413-3424.

[43]

Hoo Y L, Liu S, Ho H L, Jin W. Fast response microstructured optical fiber methane sensor with multiple side-openings. IEEE Photonics Technology Letters, 2010, 22(5): 296-298.

[44]

Jaworski P. A review of antiresonant hollow-core fiber-assisted spectroscopy of gases. Sensors, 2021, 21(16): 5640

[45]

Yao C, Hu M, Ventura A, Hayashi J G, Poletti F, Ren W. Tellurite hollow-core antiresonant fiber-coupled quantum cascade laser absorption spectroscopy. Journal of Lightwave Technology, 2021, 39(17): 5662-5668.

[46]

Krzempek K. Part-per-billion level photothermal nitric oxide detection at 5.26 using antiresonant hollow-core fiber-based heterodyne interferometry. Optics Express, 2021, 29(20): 32568-32579.

[47]

Kozioł P, Jaworski P, Krzempek K, Hoppe V, Dudzik G, Yu F, et al. . Fabrication of microchannels in a nodeless antiresonant hollow-core fiber using femtosecond laser pulses. Sensors, 2021, 21(22): 7591

[48]

Yu F, Song P, Wu D, Birks T, Bird D, Knight J. Attenuation limit of silica-based hollow-core fiber at mid-IR wavelengths. APL Photonics, 2019, 4(8): 080803

[49]

Zeisberger M, Hartung A, Schmidt M. Understanding dispersion of revolver-type anti-resonant hollow core fibers. Fibers, 2018, 6(4): 68.

[50]

Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J. Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 2002, 27(18): 1592-1594.

[51]

Crank J. The Mathematics of Diffusion, 19752Oxford. Clarendon Press

[52]

Challener W A, Kasten A M, Yu F, Puc G, Mangan B J. Dynamics of trace methane diffusion/ flow into hollow core fiber using laser absorption spectroscopy. IEEE Sensors Journal, 2021, 21(5): 6287-6292.

[53]

Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena, 20072New York. John Wiley & Sons

[54]

Masum B M, Aminossadati S M, Kizil M S, Leonardi C R. Numerical and experimental investigations of pressure-driven gas flow in hollow-core photonic crystal fibers. Applied Optics, 2019, 58(4): 963-972.

[55]

Higgins B G, Binous H. Binary diffusion coefficients for gases, 2013[Online]

[56]

Hoo Y L, Jin W, Ho H L, Wang D N. Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1434-1436.

[57]

OpenFOAM. User guide: scalarTransportFoam, 2018[Online]

[58]

Holzmann T. Mathematics, numerics, derivations and OpenFOAM® Holzmann CFD, release 7.0, 2019[Online]

[59]

Lesieur M. Turbulence in Fluids, Fluid Mechanics and Its Applications, 1990, Dordrecht. Springer

[60]

Li J S, Chen W, Fischer H. Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry. Applied Spectroscopy Reviews, 2013, 48(7): 523-559.

[61]

Bojęś P, Jaworski P, Krzempek K, Malecha Z, Yu F, Wu D, et al. . Experimental and numerical analysis of gas flow in nodeless antiresonant hollow-core fibers for optimization of laser gas spectroscopy sensors. Optics & Laser Technology, 2022, 152: 108157.

[62]

Hill C, Gordon I E, Kochanov R V, Barrett L, Wilzewski J S, Rothman L S. HITRANonline: an online interface and the flexible representation of spectroscopic data in the HITRAN database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 177: 4-14.

[63]

Lehmann H, Bartelt H, Willsch R, Amezcua-Correa R, Knight J C. In-line gas sensor based on a photonic bandgap fiber with laser-drilled lateral microchannels. IEEE Sensors Journal, 2011, 11(11): 2926-2931.

[64]

Zhao P, Zhao Y, Bao H, Ho H L, Jin W, Fan S, et al. . Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nature Communications, 2020, 11(1): 847

RIGHTS & PERMISSIONS

The Author(s)

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/