Different-Mode Power Splitters for Optical Testing of Three-Channel and Dual-Mode Waveguide Crossing

Hansi Ma , Te Du , Xinpeng Jiang , Zhaojian Zhang , Xin He , Huan Chen , Yang Yu , Zhenfu Zhang , Yunxin Han , Junbo Yang , Yuanxi Peng

Photonic Sensors ›› 2024, Vol. 15 ›› Issue (2) : 250225

PDF
Photonic Sensors ›› 2024, Vol. 15 ›› Issue (2) : 250225 DOI: 10.1007/s13320-024-0739-8
Regular

Different-Mode Power Splitters for Optical Testing of Three-Channel and Dual-Mode Waveguide Crossing

Author information +
History +
PDF

Abstract

We study that the different-mode (waveguide-connected) power splitter [(W)PS] can provide different-mode testing points for the optical testing. With the PS or WPS providing two different-mode testing points, the measured insertion losses (ILs) of the three-channel and dual-mode waveguide crossing (WC) for both the fundamental transverse electric (TE0) and TE1 modes are less than 1.8 dB or 1.9 dB from 1540 nm to 1560 nm. At the same time, the crosstalks (CTs) are lower than −17.4 dB or −18.2 dB. The consistent test results indicate the accuracy of the (W)PS-based testing circuit. Additionally, combining the tunable tap couplers, the (W)PS can provide multiple testing points with different modes and different transmittances.

Keywords

Different-mode (waveguide-connected) power splitter / testing points / three-channel and dual-mode waveguide crossing

Cite this article

Download citation ▾
Hansi Ma, Te Du, Xinpeng Jiang, Zhaojian Zhang, Xin He, Huan Chen, Yang Yu, Zhenfu Zhang, Yunxin Han, Junbo Yang, Yuanxi Peng. Different-Mode Power Splitters for Optical Testing of Three-Channel and Dual-Mode Waveguide Crossing. Photonic Sensors, 2024, 15(2): 250225 DOI:10.1007/s13320-024-0739-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, . Roadmap on silicon photonics. Journal of Optics, 2016, 18(7): 073003.

[2]

Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Large-scale nanophotonic phased array. Nature, 2013, 493, 195-199.

[3]

Wang Z, Peng Z, Zhang Y, Wu Y, Hu Y, Wu J, . 93-THz ultra-broadband and ultra-low loss Y-junction photonic power splitter with phased inverse design. Optics Express, 2023, 31(10): 15904-15916.

[4]

Yuan H, Wang Z, Peng Z, Wu J, Yang J. Ultra-compact and nonvolatile nanophotonic neural networks. Advanced Optical Materials, 2023, 11(16): 2300215.

[5]

Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser & Photonics Reviews, 2014, 8(2): L18-L22.

[6]

Dai D, Li C, Wang S, Wu H, Shi Y, Wu Z, . 10-channel mode (de)multiplexer with dual polarizations. Laser & Photonics Reviews, 2018, 12(1): 1700109.

[7]

Chang W, Lu L, Ren X, Li D, Pan Z, Cheng M, . Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers. Photonics Research, 2018, 6(7): 660-665.

[8]

Liu Y, Xu K, Wang S, Shen W, Xie H, Wang Y, . Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nature Communication, 2019, 10(1): 1-7.

[9]

Howe S, Headley W R, Cox D C, Mashanovich G Z, Thomson D J, Reed G T. Fabrication and tailoring of silicon photonic devices via focused ion beam. Silicon Photonics IV, 2009, 7220(4): 220-228.

[10]

Dakss M L, Kuhn L, Heidrich P F, Scott B A. Grating coupler for efficient excitation of optical guided waves in thin films. Applied Physics Letters, 1970, 16, 523-525.

[11]

Topley R, Martinez-Jimenez G, O’Faolain L, Healy N, Mailis S, Thomson D J, . Locally erasable couplers for optical device testing in silicon on insulator. Journal of Lightwave Technology, 2014, 32(12): 2248-2253.

[12]

Scheerlinck S, Taillaert D, Van Thourhout D, Baets R. Flexible metal grating based optical fiber probe for photonic integrated circuits. Applied Physics Letters, 2008, 92(3): 031104.

[13]

Chen X, Milosevic M M, Runge A F J, Yu X, Khokhar A Z, Mailis S, . Silicon erasable waveguides and directional couplers by germanium ion implantation for configurable photonic circuits. Optics Express, 2020, 28(12): 17630-17642.

[14]

Zhang Y, Zhang Q, Ríos C, Shalaginov M Y, Chou J B, Roberts C, . Transient tap couplers for wafer-level photonic testing based on optical phase change materials. ACS Photonics, 2021, 8(7): 1903-1908.

[15]

Ma H, He X, Zhu G, Wu J, Jiang X, Du T, . Different-mode power splitters based on a multi-dimension direct-binary-search algorithm. Optics Express, 2023, 31(17): 27393-27406.

[16]

Lu L, Zhang M, Zhou F, Chang W, Tang J, Li D, . Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect. Optics Express, 2017, 25(15): 18355-18364.

[17]

Ma H S, Huang J, Zhang K W, Yang J B. Inverse-designed arbitrary-input and ultra-compact 1 × N power splitters based on high symmetric structure. Scientific Reports, 2020, 10(1): 11757.

[18]

Lu L, Liu D, Zhou F, Li D, Cheng M, Deng L, . Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Optics Letters, 2016, 41(21): 5051-5054.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/