Fiber-Optic Biosensors for Cancer Theranostics: From in Vitro to in Vivo
Cancer has been one of the most serious diseases, resulting in more than 10 million deaths every year. Fiber-optic sensors have great potential for diagnosing and treating cancer due to their flexibility, precise positioning, real-time monitoring, and minimally invasive characteristics. Compared to traditional central laboratory examination, fiber-optic biosensors can provide high sensitivity, miniaturization, and versatility, which feature the point-of-care diagnostic capability. Herein, we focus on recent advances in fiber-optic biosensors for cancer theranostics. It is primarily concerned with advancements in the design of various fiber sensing approaches, fiber cancer sensing, and therapy sensors. With fiber-optic biosensors, cancer marker detection, cancerous cell differentiation, ex vivo tumor model validation, and in vivo tumor detection can be achieved. And the medical fiber also can be used to provide photothermal therapy, photodynamic therapy, and combination therapy for solid tumors. Additionally, cancer sensing and therapy can be integrated into the fiber, which demonstrates the multiplexing capabilities of fiber-optic biosensors. Lastly, we systematically summarize the fiber biosensor applications from in vitro to in vivo, and conclude with the challenges in development and prospects.
[1] | H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, 2021, 71(3): 209–249. |
[2] | C. Xia, X. Dong, H. Li, M. Cao, D. Sun, S. He, et al., “Cancer statistics in China and United States, 2022: profiles, trends, and determinants,” Chinese Medical Journal, 2022, 135(05): 584–590. |
[3] | F. Bray, M. Laversanne, E. Weiderpass, and I. Soerjomataram, “The ever-increasing importance of cancer as a leading cause of premature death worldwide,” Cancer, 2021, 127(16): 3029–3030. |
[4] | M. F. Ullah and M. Aatif, “The footprints of cancer development: cancer biomarkers,” Cancer Treatment Reviews, 2009, 35(3): 193–200. |
[5] | D. Anwanwan, S. K. Singh, S. Singh, V Saikam, and R. Singh, “Challenges in liver cancer and possible treatment approaches,” Biochimica et Biophysica Acta (BBA)–Reviews on Cancer, 2020, 1873(1): 188314. |
[6] | P. Hohenberger and S. Gretschel, “Gastic cancer,” The Lancet, 2003, 362(9380): 305–315. |
[7] | S. Maman and I. P. Witz, “A history of exploring cancer in context,” Nature Reviews Cancer, 2018, 18(6): 359–376. |
[8] | C. Pucci, C. Martinelli, and G. Ciofani, “Innovative approaches for cancer treatment: current perspectives and new challenges,” Ecancermedicalscience, 2019, 13: 961. |
[9] | M. Vishwakarma and E. Piddini, “Outcompeting cancer,” Nature Reviews Cancer, 2020, 20(3): 187–198. |
[10] | H. Brody, “Cancer diagnosis,” Nature, 2020, 579(7800): S1. |
[11] | S. D. Alharthi, D. Bijukumar, S. Prasad, A. M. Khan, and M. T. Mathew, “Evolution in biosensors for cancers biomarkers detection: a review,” Journal of Bio- and Tribo-Corrosion, 2021, 7: 1–17. |
[12] | V. S. A. Jayanthi, A. B. Das, and U. Saxena, “Recent advances in biosensor development for the detection of cancer biomarkers,” Biosensors and Bioelectronics, 2017, 91: 15–23. |
[13] | D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosensors and Bioelectronics, 2014, 61: 541–546. |
[14] | D. Sun, T. Guo, and B. O. Guan, “Label-free detection of DNA hybridization using a reflective microfiber Bragg grating biosensor with self-assembly technique,” Journal of Lightwave Technology, 2017, 35(16): 3354–3359. |
[15] | D. Sun, L. P. Sun, T. Guo, and B. O. Guan, “Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor,” Journal of Lightwave Technology, 2018, 37(11): 2756–2761. |
[16] | B. Luo, Z. Liu, X. Wang, S. Shi, N. Zhong, P. Ma, et al., “Dual-peak long period fiber grating coated with graphene oxide for label-free and specific assays of H5N1 virus,” Journal of Biophotonics, 2021, 14(1): e202000279. |
[17] | H. Khan, M. R. Shah, J. Barek, and M. I. Malik, “Cancer biomarkers and their biosensors: a comprehensive review,” TrAC Trends in Analytical Chemistry, 2022, 158: 116813. |
[18] | B. Kaur, S. Kumar, and B. K. Kaushik, “Recent advancements in optical biosensors for cancer detection,” Biosensors and Bioelectronics, 2022, 197: 113805. |
[19] | Y. Zhu, Q. Li, C. Wang, Y. Hao, N. Yang, M. Chen, et al., “Rational design of biomaterials to potentiate cancer thermal therapy,” Chemical Reviews, 2023, 123(11): 7326–7378. |
[20] | B. Mehrjou, Y. Wu, P. Liu, G. Wang, and P. K. Chu, “Design and properties of antimicrobial biomaterials surfaces,” Advanced Healthcare Materials, 2022, 12(16): 2202073. |
[21] | N. Ayyanar, G. T. Raja, M. Sharma, and D. S. Kumar, “Photonic crystal fiber-based refractive index sensor for early detection of cancer,” IEEE Sensors Journal, 2018, 18(17): 7093–7099. |
[22] | M. M. Eid, A. N. Z. Rashed, A. A. M. Bulbul, and E. Podder, “Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection,” Plasmonics, 2021, 16: 717–727. |
[23] | G. P. Mishra, D. Kumar, V. S. Chaudhary, and G. Murmu, “Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor,” Applied Optics, 2020, 59(33): 10321–10329. |
[24] | Panda and P. P. Devi, “Photonic crystal biosensor for refractive index based cancerous cell detection,” Optical Fiber Technology, 2020, 54: 102123. |
[25] | M. A. Mollah, R. J. Usha, S. Tasnim, and K. Ahmed, “Detection of cancer affected cell using Sagnac interferometer based photonic crystal fiber refractive index sensor,” Optical and Quantum Electronics, 2020, 52: 1–12. |
[26] | D. Sun, Y. Ran, and G. Wang, “Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber Bragg grating,” Sensors, 2017, 17(11): 2559. |
[27] | P. Kumaar and A. Sivabramanian, “Design and bulk sensitivity analysis of a silicon nitride photonic biosensor for cancer cell detection,” International Journal of Optics, 2022, 2022: 6085833. |
[28] | G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, et al., “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosensors and Bioelectronics, 2016, 80: 590–600. |
[29] | D. Tyagi, S. K. Mishra, B. Zou, C. Lin, T. Hao, G. Zhang, et al., “Nano-functionalized long-period fiber grating probe for disease-specific protein detection,” Journal of Materials Chemistry B, 2018, 6(3): 386–392. |
[30] | C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, et al., “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosensors and Bioelectronics, 2017, 92: 449–456. |
[31] | C. Liu, T. Lei, K. Ino, T. Matsue, N. Tao, and C. Z. Li, “Real-time monitoring biomarker expression of carcinoma cells by surface plasmon resonance biosensors,” Chemical Communications, 2012, 48(84): 10389–10391. |
[32] | H. Vaisocherová, V. M. Faca, A. D. Taylor, S. Hanash, and S. Jiang, “Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera,” Biosensors and Bioelectronics, 2009, 24(7): 2143–2148. |
[33] | B. Sciacca, A. Francois, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sensors and Actuators B: Chemical, 2013, 183: 454–458. |
[34] | B. Kaur, S. Kumar, and B. K. Kaushik, “MXenes-based fiber-optic SPR sensor for colorectal cancer diagnosis,” IEEE Sensors Journal, 2022, 22(7): 6661–6668. |
[35] | S. Mostufa, T. B. A. Akib, M. M. Rana, and M. R. Islam, “Highly sensitive TiO2/Au/graphene layer-based surface plasmon resonance biosensor for cancer detection,” Biosensors, 2022, 12(8): 603. |
[36] | M. Fan, Q. She, R. You, Y. Huang, J. Chen, H. Su, et al., “‘On-off’ SERS sensor triggered by IDO for non-interference and ultrasensitive quantitative detection of IDO,” Sensors and Actuators B: Chemical, 2021, 344: 130166. |
[37] | G. Wang, R. J. Lipert, M. Jain, S. Kaur, S. Chakraboty, M. P. Torres, et al., “Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering,” Analytical Chemistry, 2011, 83(7): 2554–2561. |
[38] | F. Beffara, J. Perumal, A. Puteri Mahyuddin, M. Choolani, S. A. Khan, J. L. Auguste, et al., “Development of highly reliable SERS-active photonic crystal fiber probe and its application in the detection of ovarian cancer biomarker in cyst fluid,” Journal of Biophotonics, 2020, 13(3): e201960120. |
[39] | S. Kim, W. Kim, A. Bang, J. Y. Song, J. H. Shin, and S. Choi, “Label-free breast cancer detection using fiber probe-based Raman spectrochemical biomarker-dominated profiles extracted from a mixture analysis algorithm,” Analytical Methods, 2021, 13(29): 3249–3255. |
[40] | Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sensors and Actuators B: Chemical, 2013, 178: 200–206. |
[41] | L. Ali, M. U. Mohammed, M. Khan, A. H. B. Yousuf, and M. H. Chowdhury, “High-quality optical ring resonator-based biosensor for cancer detection,” IEEE Sensors Journal, 2019, 20(4): 1867–1875. |
[42] | T. Ayupova, M. Shaimerdenova, M. Sypabekova, L. Vangelista, and D. Tosi, “Picomolar detection of thrombin with fiber-optic ball resonator sensor using optical backscatter reflectometry,” Optik, 2021, 241: 166969. |
[43] | Z. Ashikbayeva, A. Bekmurzayeva, Z. Myrkhiyeva, N. Assylbekova, T. S. Atabaev, and D. Tosi, “Green-synthesized gold nanoparticle-based optical fiber ball resonator biosensor for cancer biomarker detection,” Optics & Laser Technology, 2023, 161: 109136. |
[44] | S. Padmanabhan, V. K. Shinoj, V. M. Murukeshan, and P. Padmanabhan, “Highly sensitive optical detection of specific protein in breast cancer cells using microstructured fiber in extremely low sample volume,” Journal of Biomedical Optics, 2010, 15(1): 017005. |
[45] | J. Yang, J. Huang, J. Huang, and L. Yang, “Ultra-sensitive detection of O-GlcNAc transferase based on micro-structured optical fiber biosensor with enhanced fluorescence collection,” Sensors and Actuators B: Chemical, 2022, 367: 132162. |
[46] | Y. Wu, M. Chen, J. Cai, Z. Xu, F. Jin, Y. Zhang, et al., “Sensitive and efficient fluorescent fiber-optic sensor for in-situ hypoxia detection in solid tumor,” IEEE Sensors Journal, 2022, 22(23): 22646–22653. |
[47] | M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, et al., “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sensors, 2020, 5(2): 454–463. |
[48] | T. Denk?eken and ?. Ay?egül, “Determination of cancer progression in breast cells by fiber optic bioimpedance spectroscopy system,” Journal of Surgery and Medicine, 2020, 4(1): 84–88 |
[49] | P. Xiao, Z. Sun, Y. Huang, W. Lin, Y. Ge, R. Xiao, et al., “Development of an optical microfiber immunosensor for prostate specific antigen analysis using a high-order-diffraction long period grating,” Optics Express, 2020, 28(11): 15783–15793. |
[50] | N. R. Ramanujam, I. Amiri, S. A. Taya, S. Olyaee, R. Udaiyakumar, A. Pasumpon Pandian, et al., “Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal,” Microsystem Technologies, 2019, 25: 189–196. |
[51] | A. H. Aly and Z. A. Zaky, “Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor,” Cryogenics, 2019, 104: 102991. |
[52] | B. Kaur, S. Kumar, and B. K. Kaushik, “2D materials-based fiber optic SPR biosensor for cancer detection at 1550 nm,” IEEE Sensors Journal, 2021, 21(21): 23957–23964. |
[53] | S. Mittal, A. Saharia, Y. Ismail, F. Petruccione, A. V. Bourdine, O. G. Morozov, et al., “Spiral shaped photonic crystal fiber-based surface plasmon resonance biosensor for cancer cell detection,” Photonics, 2023, 10(3): 230. |
[54] | J. P. Monteiro, J. H. de Oliveira, E. Radovanovic, A. G. Brolo, and E. M. Girotto, “Microfluidic plasmonic biosensor for breast cancer antigen detection,” Plasmonics, 2016, 11: 45–51. |
[55] | D. Sun, Y. Fu, and Y. Yang, “Label-free detection of breast cancer biomarker using silica microfiber interferometry,” Optics Communications, 2020, 463: 125375. |
[56] | S. Zhang, X. Pei, H. Gao, S. Chen, and J. Wang, “Metal-organic framework-based nanomaterials for biomedical applications,” Chinese Chemical Letters, 2020, 31(5): 1060–1070. |
[57] | M. De Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, et al., “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Optics Express, 2019, 27(13): 18508–18521. |
[58] | P. Das, B. C. Behera, S. P. Dash, A. N. ESR, N. K. Sahoo, and S. K. Tripathy, “Co3O4 magnetic nanoparticles-coated optical fibers for sensing sialic acid,” ACS Applied Nano Materials, 2022, 5(7): 8973–8981. |
[59] | H. Li, T. Huang, L. Lu, H. Yuan, L. Zhang, H. Wang, et al., “Ultrasensitive detection of exosomes using an optical microfiber decorated with plasmonic MoSe2-supported gold nanorod nanointerfaces,” ACS Sensors, 2022, 7(7): 1926–1935. |
[60] | A. Iele, A. Ricciardi, C. Pecorella, A. Cirillo, F. Ficuciello, B. Siciliano, et al., “Miniaturized optical fiber probe for prostate cancer screening,” Biomedical Optics Express, 2021, 12(9): 5691–5703. |
[61] | L. Ni, W. K. Lin, A. Kasputis, D. Postiff, J. Siddiqui, M. J. Allaway, et al., “Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: preliminary study with intact human prostates ex-vivo,” Photoacoustics, 2022, 28: 100418. |
[62] | D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, et al., “Diffuse reflectance spectroscopy: a new guidance tool for improvement of biopsy procedures in lung malignancies,” Clinical Lung Cancer, 2012, 13(6): 424–431. |
[63] | L. De Boer, B. Molenkamp, T. Bydlon, B. Hendriks, J. Wesseling, H. Sterenborg, et al., “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Research and Treatment, 2015, 152: 509–518. |
[64] | A. Bratchenko, D. N. Artemyev, O. O. Myakinin, Y. A. Khristoforova, A. A. Moryatov, S. V. Kozlov, et al., “Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions,” Journal of Biomedical Optics, 2017, 22(2): 027005. |
[65] | R. Cicchi, A. Cosci, S. Rossari, D. Kapsokalyvas, E. Baria, V. Maio, et al., “Combined fluorescence-Raman spectroscopic setup for the diagnosis of melanocytic lesions,” Journal of Biophotonics, 2014, 7(1–2): 86–95. |
[66] | G. C. Langhout, J. W. Spliethoff, S. J. Schmitz, A. Aalbers, M. L. van Velthuysen, B. H. Hendriks, et al., “Differentiation of healthy and malignant tissue in colon cancer patients using optical spectroscopy: a tool for image-guided surgery,” Lasers in Surgery and Medicine, 2015, 47(7): 559–565. |
[67] | F. Placzek, E. C. Bautista, S. Kretschmer, L. M. Wurster, F. Knorr, G. González-Cerdas, et al., “Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy,” Analyst, 2020, 145(4): 1445–1456. |
[68] | M. Sharma, E. Marple, J. Reichenberg, and J. W. Tunnell, “Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications,” Review of Scientific Instruments, 2014, 85(8): 083101. |
[69] | L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, et al., “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” Journal of Biomedical Optics, 2014, 19(11): 117003. |
[70] | Schleusener, P. Gluszczynska, C. Reble, I. Gersonde, J. Helfmann, H. J. Cappius, et al., “Perturbation factors in the clinical handling of a fiber-coupled Raman probe for cutaneous in vivo diagnostic Raman spectroscopy,” Applied Spectroscopy, 2015, 69(2): 243–256. |
[71] | Lin, W. Zheng, C. M. Lim, and Z. Huang, “Real-time in vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy,” Theranostics, 2017, 7(14): 3517. |
[72] | Lin, W. Zheng, C. M. Lim, and Z. Huang, “Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy,” Biomedical Optics Express, 2016, 7(9): 3705–3715. |
[73] | J. Wang, K. Lin, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, et al., “Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy,” Scientific Reports, 2015, 5(1): 12957. |
[74] | B. Yu, A. Shah, V. K. Nagarajan, and D. G. Ferris, “Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe,” Biomedical Optics Express, 2014, 5(3): 675–689. |
[75] | T. P. Thomas, M. T. Myaing, J. Y. Ye, K. Candido, A. Kotlyar, J. Beals, et al., “Detection and analysis of tumor fluorescence using a two-photon optical fiber probe,” Biophysical Journal, 2004, 86(6): 3959–3965. |
[76] | T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, et al., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” Journal of Biomedical Optics, 2008, 13(1): 014024. |
[77] | J. Desroches, M. Jermyn, M. Pinto, F. Picot, M. A. Tremblay, S. Obaid, et al., “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Scientific Reports, 2018, 8(1): 1792. |
[78] | J. W. Spliethoff, L. L. de Boer, M. A. Meier, W. Prevoo, J. de Jong, T. M. Bydlon, et al., “Spectral sensing for tissue diagnosis during lung biopsy procedures: the importance of an adequate internal reference and real-time feedback,” Lung Cancer, 2016, 98: 62–68. |
[79] | J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, et al., “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study,” Clinical Cancer Research, 2016, 22(2): 357–365. |
[80] | L. de Boer, B. H. Hendriks, F. van Duijnhoven, M. J. T. V. Peeters-Baas, K. van de Vijver, C. E. Loo, et al., “Using DRS during breast conserving surgery: identifying robust optical parameters and influence of inter-patient variation,” Biomedical Optics Express, 2016, 7(12): 5188–5200. |
[81] | L. L. de Boer, T. M. Bydlon, F. van Duijnhoven, M. J. T. Vranken Peeters, C. E. Loo, G. A. Winter-Warnars, et al., “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” Journal of Translational Medicine, 2018, 16: 1–14. |
[82] | D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, et al., “Autofluorescence and white light imaging–guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” Journal of Biophotonics, 2018, 11(4): e201700251. |
[83] | A. R. epanovi, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Review of Scientific Instruments, 2009, 80(4): 043103. |
[84] | T. Zhang, Y. Zheng, C. Wang, Z. Mu, Y. Liu, and J. Lin, “A review of photonic crystal fiber sensor applications for different physical quantities,” Applied Spectroscopy Reviews, 2018, 53(6): 486–502. |
[85] | T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 1997, 22(13): 961–963. |
[86] | R. Ahmed, M. M. Khan, R. Ahmmed, and A. Ahad, “Design, simulation & optimization of 2D photonic crystal power splitter,” Optics and Photonics Journal, 2013, 3(2A): 33337. |
[87] | De, T. K. Gangopadhyay, and V. K. Singh, “Prospects of photonic crystal fiber as physical sensor: an overview,” Sensors, 2019, 19(3): 464. |
[88] | M. A. Mollah, M. Yousufali, I. M. Ankan, M. M. Rahman, H. Sarker, and K. Chakrabarti, “Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer,” Sensing and Bio-Sensing Research, 2020, 29: 100344. |
[89] | S. Jindal, S. Sobti, M. Kumar, S. Sharma, and M. K. Pal, “Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection,” IEEE Sensors Journal, 2016, 16(10): 3705–3710. |
[90] | X. Li, N. Chen, X. Zhou, P. Gong, S. Wang, Y. Zhang, et al., “A review of specialty fiber biosensors based on interferometer configuration,” Journal of Biophotonics, 2021, 14(6): e202100068 |
[91] | Kozma, F. Kehl, E. Ehrentreich-F?rster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosensors and Bioelectronics, 2014, 58: 287–307. |
[92] | V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science, 1997, 278(5339): 840–843. |
[93] | K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” Journal of Lightwave Technology, 2011, 29(13): 1926–1930. |
[94] | E. Song, X. Long, Q. Yang, F. Jin, X. Yue, Z. Li, et al., “Near-infrared microfiber Bragg grating for sensitive measurement of tension and bending,” Optics Express, 2023, 31(10): 15674–15681. |
[95] | N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, et al., “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosensors and Bioelectronics, 2016, 85: 876–882 |
[96] | B. Luo, S. Wu, Z. Zhang, W. Zou, S. Shi, M. Zhao, et al., “Human heart failure biomarker immunosensor based on excessively tilted fiber gratings,” Biomedical Optics Express, 2017, 8(1): 57–67. |
[97] | J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Analytical and Bioanalytical Chemistry, 2007, 389: 1193–1199. |
[98] | C. Steinem, A. Janshoff, V. S. Y. Lin, N. H. V?lcker, and M. R. Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing,” Tetrahedron, 2004, 60(49): 11259–11267. |
[99] | N. B. Shah and T. M. Duncan, “Bio-layer interferometry for measuring kinetics of proteinprotein interactions and allosteric ligand effects,” Journal of Visualized Experiments, 2014, 84: e51383. |
[100] | C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Optics Express, 2013, 21(3): 3055–3066. |
[101] | J. F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sensors, 2017, 2(1): 16–30. |
[102] | M. Mascini and S. Tombelli, “Biosensors for biomarkers in medical diagnostics,” Biomarkers, 2008, 13(7–8): 637–657. |
[103] | J. Chung, S. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensors and Actuators B: Chemical, 2005, 111: 416–422. |
[104] | T. Riedel, C. Rodriguez-Emmenegger, A. de los Santos Pereira, A. Bědajánková, P. Jinoch, P. M. Boltovets, et al., “Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay,” Biosensors and Bioelectronics, 2014, 55: 278–284. |
[105] | S. K. Metkar and K. Girigoswami, “Diagnostic biosensors in medicine–a review,” Biocatalysis and Agricultural Biotechnology, 2019, 17: 271–283. |
[106] | L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, et al., “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light: Science & Applications, 2021, 10(1): 181. |
[107] | Z. Chen, F. Zhang, Y. Lu, Y. Li, G. Liu, J. Shan, et al., “Bioelectronic modulation of single-wavelength localized surface plasmon resonance (LSPR) for the detection of electroactive biomolecules,” Chinese Chemical Letters, 2022, 33(6): 3144–3150. |
[108] | J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, 2003, 377: 528–539. |
[109] | Jahanshahi, E. Zalnezhad, S. D. Sekaran, and F. R. M. Adikan, “Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor,” Scientific Reports, 2014, 4(1): 3851. |
[110] | ?. Torun, ?. H. Boyac?, E. Temür, and U. Tamer, “Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria,” Biosensors and Bioelectronics, 2012, 37(1): 53–60. |
[111] | M. Perfézou, A. Turner, and A. Merko?i, “Cancer detection using nanoparticle-based sensors,” Chemical Society Reviews, 2012, 41(7): 2606–2622. |
[112] | Y. Xie, Y. Li, L. Niu, H. Wang, H. Qian, and W. Yao, “A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite,” Talanta, 2012, 100: 32–37. |
[113] | H. Wang, X. Jiang, S. T. Lee, and Y. He, “Silicon nanohybrid-based surface-enhanced Raman scattering sensors,” Small, 2014, 10(22): 4455–4468. |
[114] | X. Guo, J. Li, M. Arabi, X. Wang, Y. Wang, and L. Chen, “Molecular-imprinting-based surface-enhanced Raman scattering sensors,” ACS Sensors, 2020, 5(3): 601–619. |
[115] | Ranjan, E. N. Esimbekova, and V. A. Kratasyuk, “Rapid biosensing tools for cancer biomarkers,” Biosensors and Bioelectronics, 2017, 87: 918–930. |
[116] | X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiberoptic evanescent wave sensor,” Biosensors and Bioelectronics, 2017, 91: 623–628. |
[117] | M. Strianese, M. Staiano, G. Ruggiero, T. Labella, C. Pellecchia, and S. D’Auria, “Fluorescence-based biosensors.” Spectroscopic Methods of Analysis: Methods and Protocols, 2012: 193–216. |
[118] | K. Girigoswami and N. Akhtar, “Nanobiosensors and fluorescence based biosensors: an overview,” International Journal of Nano Dimension, 2019, 10(1): 1–17. |
[119] | M. A. Badshah, N. Y. Koh, A. W. Zia, N. Abbas, Z. Zahra, and M. W. Saleem, “Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing,” Nanomaterials, 2020, 10(9): 1749. |
[120] | C. Bettegowda, M. Sausen, R. Leary, I. Kinde, Y. Wang, N. Agrawal, et al., “Detection of circulating tumor DNA in early-and late-stage human malignancies,” Science Translational Medicine, 2014, 6(224): 224ra24. |
[121] | M. Dhar, J. Wong, J. Che, M. Matsumoto, T. Grogan, D. Elashoff, et al., “Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer,” Scientific Reports, 2018, 8(1): 2592. |
[122] | D. A. Haber and V. E. Velculescu, “Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA,” Cancer Discovery, 2014, 4(6): 650–661. |
[123] | B. Hench, J. Hench, and M. Tolnay, “Liquid biopsy in clinical management of breast, lung, and colorectal cancer,” Frontiers in Medicine, 2018, 5: 00009. |
[124] | Y. Jiang and D. Wang, “Liquid biopsy in the OMICS era of tumor medicine,” Open Access Journal of Biomedical Engineering and Its Applications, 2018, 1(3): 115. |
[125] | W. Wang, S. Feng, I. T. Tai, G. Chen, R. Chen, and H. Zeng, “Blood test using surface-enhanced Raman spectroscopy with colloidal silver nanoparticle substrate to detect polyps and colorectal cancer (conference presentation),” Proceeding of SPIE, 2016, 9704: 97040A. |
[126] | L. Zhou, C. Liu, Z. Sun, H. Mao, L. Zhang, X. Yu, et al., “Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis,” Biosensors and Bioelectronics, 2019, 137: 140–147. |
[127] | V S. Chaudhary, D. Kumar, B. P. Pandey, and S. Kumar, “Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters–a review,” IEEE Sensors Journal, 2022, 23(2): 1012–1023. |
[128] | Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li, J. Li, et al., “Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics,” Nano-Micro Letters, 2022, 14(1): 61. |
[129] | M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser & Photonics Reviews, 2015, 9(6): 604–627. |
[130] | Horne, L. McLoughlin, B. Bridgers, and E. K. Wujcik, “Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring,” Sensors and Actuators Reports, 2020, 2(1): 100005. |
[131] | A. B. Seddon, “Potential for using mid-infrared light for non-invasive, early-detection of skin cancers in vivo,” Proceeding of SPIE, 2013, 8576(85760V): 170–179. |
[132] | B. Yu, V. K. Nagarajan, and D. G. Ferris, “Mobile fiber-optic sensor for detection of oral and cervical cancer in the developing world,” Mobile Health Technologies: Methods and Protocols, 2015: 155–170. |
[133] | W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, et al., “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer, 2013, 80(2): 165–171. |
[134] | A. Alqarni, W. G. Willmore, J. Albert, and C. W. Smelser, “Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro,” Applied Optics, 2021, 60(8): 2400–2411. |
[135] | Hernández-Arenas, R. Pimentel-Domínguez, J. R. Vélez-Cordero, and J. Hernández-Cordero, “Fiber optic probe with functional polymer composites for hyperthermia,” Biomedical Optics Express, 2021, 12(8): 4730–4744. |
[136] | J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, et al., “Gold nanocages as photothermal transducers for cancer treatment,” Small, 2010, 6(7): 811–817. |
[137] | J. Hornef, C. M. Edelblute, K. H. Schoenbach, R. Heller, S. Guo, and C. Jiang, “Thermal analysis of infrared irradiation-assisted nanosecond-pulsed tumor ablation,” Scientific Reports, 2020, 10(1): 5122. |
[138] | B. Paiva, M. Bublik, D. J. Castro, M. Udewitz, M. B. Wang, L. P. Kowalski, et al., “Intratumor injections of cisplatin and laser thermal therapy for palliative treatment of recurrent cancer,” Photomedicine and Laser Surgery, 2005, 23(6): 531–535. |
[139] | N. Palumbo, O. Cervantes, C. Eugênio, F. T. Hortense, J. C. Ribeiro, A. A. P. Paolini, et al., “Intratumor cisplatin nephrotoxicity in combined laser-induced thermal therapy for cancer treatment,” Lasers in Surgery and Medicine, 2017, 49(8): 756–762. |
[140] | Kanekal, J. Joo, M. Bublik, A. Bababeygy, C. Loh, D. J. Castro, et al., “Retention of intratumor injections of cisplatinum in murine tumors and the impact on laser thermal therapy for cancer treatment,” European Archives of Oto-Rhino-Laryngology, 2009, 266: 279–284. |
[141] | J. H. Choi, H. Seo, J. H. Park, J. H. Son, D. I. Kim, J. Kim, et al., “Poly (D, L-lactic-co-glycolic acid) (PLGA) hollow fiber with segmental switchability of its chains sensitive to NIR light for synergistic cancer therapy,” Colloids and Surfaces B: Biointerfaces, 2019, 173: 258–265. |
[142] | H. Liu, Y. Fu, Y. Li, Z. Ren, X. Li, G. Han, et al., “A fibrous localized drug delivery platform with NIR-triggered and optically monitored drug release,” Langmuir, 2016, 32(35): 9083–9090. |
[143] | Arnfield, S. Gonzalez, M. Mcphee, J. Tulip, and P. Lea, “Cylindrical irradiator fiber tip for photodynamic therapy,” Lasers in Surgery and Medicine, 1986, 6(2): 150–154. |
[144] | Z. Meng, Z. Chen, G. Lu, X. Dong, J. Dai, X. Lou, et al., “Short-wavelength aggregation-induced emission photosensitizers for solid tumor therapy: Enhanced with white-light fiber optic,” International Journal of Nanomedicine, 2022: 6607–6619. |
[145] | M. Zamadar, G. Ghosh, A. Mahendran, M. Minnis, B. I. Kruft, A. Ghogare, et al., “Photosensitizer drug delivery via an optical fiber,” Journal of the American Chemical Society, 2011, 133(20): 7882–7891. |
[146] | A. Ghogare, I. Rizvi, T. Hasan, and A. Greer, “‘Pointsource’ delivery of a photosensitizer drug and singlet oxygen: eradication of glioma cells in vitro,” Photochemistry and Photobiology, 2014, 90(5): 1119–1125. |
[147] | V. Karimnia, F. J. Slack, and J. P. Celli, “Photodynamic therapy for pancreatic ductal adenocarcinoma,” Cancers, 2021, 13(17): 4354. |
[148] | R. Zeng, C. Liu, L. Li, X. Cai, R. Chen, and Z. Li, “Clinical efficacy of HiPorfin photodynamic therapy for advanced obstructive esophageal cancer,” Technology in Cancer Research & Treatment, 2020, 19: 1533033820930335. |
[149] | H. Aza?s, M. Baydoun, M. Moinard, O. Morales, L. Colombeau, B. Leroux, et al., “Intraperitoneal targeted photodynamic therapy for advanced epithelial ovarian cancer,” Photodiagnosis and Photodynamic Therapy, 2023, 41: 103404. |
[150] | Y. Duo, M. Suo, D. Zhu, Z. Li, Z. Zheng, and B. Z. Tang, “AIEgen-based bionic nanozymes for the interventional photodynamic therapy-based treatment of orthotopic colon cancer,” ACS Applied Materials & Interfaces, 2022, 14(23): 26394–26403. |
[151] | H. Ma, H. H. Ma, X. B. Deng, R. Yu, K. W. Song, K. K. Wei, et al., “Photodynamic therapy in combination with chemotherapy, targeted, and immunotherapy as a successful therapeutic approach for advanced gastric adenocarcinoma: a case report and literature review,” Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(5): 308–314. |
[152] | H. Yu, S. C. Lee, G. Park, J. Kim, H. Kim, S. H. Choi, et al., “Development of a customized endoscopic dual-diffusing optical fiber probe for pancreatic cancer therapy: toward clinical use,” Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(4): 280–286. |
[153] | R. K. Singh, A. G. Kurian, K. D. Patel, N. Mandakhbayar, N. H. Lee, J. C. Knowles, et al., “Label-free fluorescent mesoporous bioglass for drug delivery, optical triple-mode imaging, and photothermal/photodynamic synergistic cancer therapy,” ACS Applied Bio Materials, 2020, 3(4): 2218–2229. |
[154] | Y. Miyoshi, T. Nishimura, Y. Shimojo, K. Okayama, and K. Awazu, “Endoscopic image-guided laser treatment system based on fiber bundle laser steering,” Scientific Reports, 2023, 13(1): 2921. |
[155] | K. J. Francis and S. Manohar, “Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization,” Physics in Medicine & Biology, 2019, 64(18): 184001. |
[156] | Pang, A. Kapur, K. Zhou, P. Anastasiadis, N. Ballirano, A. J. Kim, et al., “Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14(5): e1826. |
[157] | Y. Ran, Z. Xu, M. Chen, W. Wang, Y. Wu, J. Cai, et al., “Fiber-optic theranostics (FOT): interstitial fiber-optic needles for cancer sensing and therapy,” Advanced Science, 2022, 9(15): 2200456. |
/
〈 | 〉 |