High Responsivity and Ultra-Low Detection Limits in Nonlinear a-Si:H p-i-n Photodiodes Enabled by Photogating

Andreas Bablich , Maurice Müller , Rainer Bornemann , Andreas Nachtigal , Peter Haring Bolívar

Photonic Sensors ›› 2022, Vol. 13 ›› Issue (4) : 230415

PDF
Photonic Sensors ›› 2022, Vol. 13 ›› Issue (4) : 230415 DOI: 10.1007/s13320-023-0689-6
Article

High Responsivity and Ultra-Low Detection Limits in Nonlinear a-Si:H p-i-n Photodiodes Enabled by Photogating

Author information +
History +
PDF

Abstract

Photodetectors operating at the wavelength in the visible spectrum are key components in high-performance optoelectronic systems. In this work, massive nonlinearities in amorphous silicon p-i-n photodiodes enabled by the photogating are presented, resulting in responsivities up to 744 mA/W at blue wavelengths. The detectors exhibit significant responsivity gains at optical modulation frequencies exceeding MHz and a more than 60-fold enhanced spectral response compared to the non-gated state. The detection limits down to 10.4 nW/mm2 and mean signal-to-noise ratio enhancements of 8.5 dB are demonstrated by illuminating the sensor with an additional 6.6 µW/mm2 red wavelength. Electro-optical simulations verify photocarrier modulation due to defect-induced field screening to be the origin of such high responsivity gains. The experimental results validate the theory and enable the development of commercially viable and complementary metal oxide semiconductor (CMOS) compatible high responsivity photodetectors operating in the visible range for low-light level imaging and detection.

Keywords

Photogating / amorphous silicon a-Si:H / nonlinearity / photodetector / responsivity gain

Cite this article

Download citation ▾
Andreas Bablich, Maurice Müller, Rainer Bornemann, Andreas Nachtigal, Peter Haring Bolívar. High Responsivity and Ultra-Low Detection Limits in Nonlinear a-Si:H p-i-n Photodiodes Enabled by Photogating. Photonic Sensors, 2022, 13(4): 230415 DOI:10.1007/s13320-023-0689-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Le Comber P G, Spear W E. Electronic transport in amorphous silicon films. Physical Review Letters, 1970, 25(8): 509-511.

[2]

Chittick R C, Alexander J H, Sterling H F. The preparation and properties of amorphous silicon. Journal of the Electrochemical Society, 1969, 116(1): 77.

[3]

Carlson D E, Wronski C R. Amorphous silicon solar cell. Applied Physics Letters, 1976, 28(11): 671-673.

[4]

Zhu Q, Coors S, Schneider B, Rieve P, Bohm M. Bias sensitive a-Si(C): H multispectral detectors. IEEE Transactions on Electron Devices, 1998, 45(7): 1393-1398.

[5]

Guha S, Payson J S, Agarwal S C, Ovshinsky S R. Fluorinated amorphous silicongermanium alloys deposited from disilane-germane mixture. Journal of Non-Crystalline Solids, 1987, 97, 1455-1458.

[6]

Cody G D, Tiedje T, Abeles B, Brooks B, Goldstein Y. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Physical Review Letters, 1981, 47(20): 1480-1483.

[7]

Street R A. Hydrogenated Amorphous Silicon, 1991, Cambridge: Cambridge University Press

[8]

Fang Y K, Hwang S B, Chen K H, Liu C R, Tsai M J, Kuo L C. An amorphous SiC/Si heterojunction p-i-n diode for low-noise and high-sensitivity UV detector. IEEE Transactions on Electron Devices, 1992, 39(2): 292-296.

[9]

Staebler D L, Crandall R S, Williams R. Stability of n-i-p amorphous silicon solar cells. Applied Physics Letters, 1981, 39(9): 733-735.

[10]

Sze S M, Ng K K. Photodetectors and solar cells. Physics of Semiconductor Devices, 2006, New York: John Wiley & Sons, Inc., 663-742.

[11]

Kübarsepp T, Haapalinna A, Kärhä P, Ikonen E. Nonlinearity measurements of silicon photodetectors. Applied Optics, 1998, 37(13): 2716-2722.

[12]

Nolting J, Dittmar G. Optische Messtechnik — Radiometrie, Photometrie und Farbmessung, 2018, Heidelberg: DOZ-Verlag Optische Fachveröffentlichung

[13]

Main C, Zollondz J H, Reynolds S, Gao W, Brüggemann R, Rose M J. Investigation of collection efficiencies much larger than unity in a-Si:H p-i-n structures. Journal of Applied Physics, 1999, 85(1): 296-301.

[14]

Zollondz J H, Reynolds S, Main C, Smirnov V, Zrinscak I. The influence of defects on response speed of high gain two-beam photogating in a-Si:H PIN structures. Journal of Non Crystalline Solids, 2002, 299, 594-598.

[15]

Maruska H P, Hicks M C, Moustakas T D, Friedman R. Optically controlled amorphous silicon photosensitive device. IEEE Transactions on Electron Devices, 1984, 31(9): 1343-1345.

[16]

Reynolds S, Main C, Smirnov V, Meftah A. Intensity dependence of quantum efficiency and photo-gating effects in thin film silicon solar cells. Physica Status Solidi C, 2010, 7(3–4): 505-508.

[17]

Hou J Y, Fonash S J. Quantum efficiencies greater than unity: a computer study of a photogating effect in amorphous silicon p-i-n devices. Applied Physics Letters, 1992, 61(2): 186-188.

[18]

Hiramoto M, Yoshimura K, Yokoyama M. Photocurrent multiplication in amorphous silicon carbide films. The Journal of Imaging Science and Technology, 1993, 37(2): 192-196.

[19]

Hiramoto M, Yoshimura K, Yokoyama M. Photomodulation of photocurrent multiplication in a high gain amorphous silicon carbide film. Applied Physics Letters, 1992, 60(9): 1102-1104.

[20]

Schropp R E I, Rubinelli F A. Photogating effect as a defect probe in hydrogenated nanocrystalline silicon solar cells. Journal of Applied Physics, 2010, 108(1): 014509.

[21]

Gloeckler M, Sites J R. Apparent quantum efficiency effects in CdTe solar cells. Journal of Applied Physics, 2004, 95(8): 4438-4445.

[22]

Hegedus S, Ryan D, Dobson K, McCandless B, Desai D. Photoconductive CdS: how does it affect CdTe/CDS solar cell performance?. MRS Online Proceedings Library (OPL), 2003, 763, B9.5.

[23]

Karimi M, Zeng X, Witzigmann B, Samuelson L, Borgström M T, Pettersson H. High responsivity of InP/InAsP nanowire array broadband photodetectors enhanced by optical gating. Nano Letters, 2019, 19(12): 8424-8430.

[24]

Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron, 2012, 73(5): 862-885.

[25]

J. R. Lakowicz, “Instrumentation for Fluorescence Spectroscopy,” Principles of fluorescence spectroscopy, 1999: 25–61.

[26]

B. J. Offrein, J. Geler-Kremer, J. Weiss, R. Dangel, P. Stark, A. Sharma, et al., “Prospects for photonic implementations of neuromorphic devices and systems,” in 2020 IEEE International Electron Devices Meeting (IEDM), USA, Dec. 2–18, 2020, pp. 7.4.1–7.4.4.

[27]

Shi Y, Ren J, Chen G, Liu W, Jin C, Guo X, . Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nature Communications, 2022, 13(1): 6048.

[28]

Lule T, Benthien S, Keller H, Mutze F, Rieve P, Seibel K, . Sensitivity of CMOS based imagers and scaling perspectives. IEEE Transactions on Electron Devices, 2000, 47(11): 2110-2122.

[29]

Lemmi F, Rahn J T, Street R A. Lateral conduction in structured amorphous silicon p+-i-n+ photodiodes. Journal of Non-Crystalline Solids, 2000, 266, 1203-1207.

[30]

Varache R, Leendertz C, Gueunier-Farret M E, Haschke J, Muñoz D, Korte L. Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Materials and Solar Cells, 2015, 141, 14-23.

[31]

Crandall R S. Modeling of thin film solar cells: Uniform field approximation. Journal of Applied Physics, 1983, 54(12): 7176-7186.

[32]

Müller M, Bablich A, Kienitz P, Bornemann R, Ogolla C O, Butz B, . High-sensitivity focus-induced photoresponse in amorphous silicon photodiodes for enhanced three-dimensional imaging sensors. Physical Review Applied, 2022, 17(3): 034075.

[33]

Hack M, Shur M. Physics of amorphous silicon alloy p-i-n solar cells. Journal of Applied Physics, 1985, 58(2): 997-1020.

[34]

Rubinelli F A. The origin of quantum efficiencies greater than unity in a-Si:H Schottky barriers. Journal of Applied Physics, 1994, 75(2): 998-1004.

[35]

Misiakos K, Lindholm F A. Analytical and numerical modeling of amorphous silicon p-i-n solar cells. Journal of Applied Physics, 1988, 64(1): 383-393.

[36]

Bablich A, Müller M, Kienitz P, Bornemann R, Ogolla C O, Butz B, . High-speed nonlinear focus- induced photoresponse in amorphous silicon photodetectors for ultrasensitive 3D imaging applications. Scientific Reports, 2022, 12(1): 10178.

[37]

Bablich A, Merfort C, Schäfer-Eberwein H, Haring-Bolivar P, Boehm M. 2-in-1 red-/green-/blue sensitive a-SiC:H/a-Si:H/a-SiGeC: H thin film photo detector with an integrated optical filter. Thin Solid Films, 2014, 552, 212-217.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/