Fast In-Situ Triaxial Remanent Magnetic Field Measurement for Single-Beam SERF Atomic Magnetometer Based on Trisection Algorithm

Tengyue Long , Bangcheng Han , Xinda Song , Yuchen Suo , Le Jia

Photonic Sensors ›› 2022, Vol. 13 ›› Issue (3) : 230311

PDF
Photonic Sensors ›› 2022, Vol. 13 ›› Issue (3) : 230311 DOI: 10.1007/s13320-023-0684-y
Regular

Fast In-Situ Triaxial Remanent Magnetic Field Measurement for Single-Beam SERF Atomic Magnetometer Based on Trisection Algorithm

Author information +
History +
PDF

Abstract

We demonstrate a method for quickly and automatically detecting all three components of a remanent magnetic field around a shielded spin-exchange relaxation-free (SERF) atomic magnetometer (AM) using the trisection algorithm (TSA) for zero-field resonance (ZFR). To satisfy the measurement of AMs, a resonance light of the 87Rb D1 line with a spectral width of less than 1MHz is converted to circular polarization by a linear polarizer and a quarter-wave plate. After the light beam has passed through the alkali metal vapor cell, the residual magnetic field can be measured by searching for triaxial ZFR optical peaks. The TSA stably reduces the measurement time to 2.41 s on average and improves the measurement accuracy, significantly outpacing existing methods. The weighted averages of all measurements with corresponding uncertainties are (−15.437 ± 0.022)nT, (6.062 ± 0.021)nT, and (−14.158 ± 0.052)nT on the x-, y-, and z-axes, respectively. These improvements could facilitate more extremely weak magnetic studies in real time, such as magnetoencephalography (MEG) and magnetocardiography (MCG) measurements.

Keywords

Atomic magnetometer / remanent magnetic field measurement / spin-exchange relaxation free / trisection algorithm

Cite this article

Download citation ▾
Tengyue Long, Bangcheng Han, Xinda Song, Yuchen Suo, Le Jia. Fast In-Situ Triaxial Remanent Magnetic Field Measurement for Single-Beam SERF Atomic Magnetometer Based on Trisection Algorithm. Photonic Sensors, 2022, 13(3): 230311 DOI:10.1007/s13320-023-0684-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim Y J, Chu P H, Savukov I, Newman S. Experimental limit on an exotic parity-odd spin-and velocity-dependent interaction using an optically polarized vapor. Nature Communications, 2019, 10(1): 1-7.

[2]

Jiang M, Su H, Garcon A, Peng X, Budker D. Search for axion-like dark matter with spin-based amplifiers. Nature Physics, 2021, 17(12): 1402-1407.

[3]

Su H, Wang Y, Jiang M, Ji W, Fadeev P, Hu D, . Search for exotic spin-dependent interactions with a spin-based amplifier. Science Advances, 2021, 7(47): eabi9535.

[4]

Dunkley B, Da Costa L, Bethune A, Jetly R, Pang E, Taylor M, . Low-frequency connectivity is associated with mild traumatic brain injury. NeuroImage, 2015, 7, 611-621.

[5]

Hill R M, Boto E, Rea M, Holmes N, Leggett J, Coles L A, . Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage, 2020, 219, 116995.

[6]

Fagaly R L. Superconducting quantum interference device instruments and applications. Review of Scientific Instruments, 2006, 77(10): 1-4.

[7]

Trabaldo E, Pfeiffer C, Andersson E, Chukharkin M, Arpaia R, Montemurro D, . Squid magnetometer based on grooved dayem nanobridges and a flux transformer. IEEE Transactions on Applied Superconductivity, 2020, 30(7): 1-4.

[8]

Wu J, Chen X, Yang Y, Zhi Q, Wang X, Zhang J, . Application of tem based on HTS SQUID magnetometer in deep geological structure exploration in the Baiyun gold deposit, Ne China. Journal of Earth Science, 2021, 32(1): 1-7.

[9]

Borna A, Iivanainen J, Carter T R, McKay J, Taulu S, Stephen J, . Cross-axis projection error in optically pumped magnetometers and its implication for magnetoencephalography systems. NeuroImage, 2022, 247, 118818.

[10]

Zou S, Zhang H, Chen X Y, Fang J C. In-situ triaxial residual magnetic field measurement based on optically-detected electron paramagnetic resonance of spin-polarized potassium. Measurement, 2022, 187, 110338.

[11]

Lucivero V, Lee W, Dural N, Romalis M. Femtotesla direct magnetic gradiometer using a single multipass cell. Physical Review Applied, 2021, 15(1): 014004.

[12]

Troullinou C, Jiménez-Martínez R, Kong J, Lucivero V, Mitchell M. Squeezed-light enhancement and backaction evasion in a high sensitivity optically pumped magnetometer. Physical Review Letters, 2021, 127(19): 193601.

[13]

Tang J, Zhai Y, Cao L, Zhang Y, Li L, Zhao B, . High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Optics Express, 2021, 29(10): 15641-15652.

[14]

Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance. Science Advances, 2018, 4(6): 6327.

[15]

Wei K, Ji W, Fu C, Wickenbrock A, Flambaum V V, Fang J, . Constraints on exotic spin-velocity-dependent interactions. Nature Communications, 2022, 13(1): 7387.

[16]

Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W. Search for new physics with atoms and molecules. Reviews of Modern Physics, 2018, 90(2): 025008.

[17]

Ji W, Chen Y, Fu C, Ding M, Fang J, Xiao Z, . New experimental limits on exotic spin-spin-velocity-dependent interactions by using SmCo5 spin sources. Physical Review Letters, 2018, 121(26): 261803.

[18]

Higbie J M, Rochester S M, Patton B, Holzlöhner R, Calia D B, Budker D. Magnetometry with mesospheric sodium. Proceedings of the National Academy of Sciences, 2011, 108(9): 3522-3525.

[19]

M. E. Çetin, “Realtime magnetometer calibration for spinning aerospace vehicles,” Middle East Technical University, 2022.

[20]

Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, . Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 2018, 555(7698): 657-661.

[21]

Tierney T M, Holmes N, Mellor S, L’opez J D, Roberts G, Hill R M, . Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography. NeuroImage, 2019, 199, 598-608.

[22]

Zhang G, Huang S, Xu F, Hu Z, Lin Q. Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography. Optics Express, 2019, 27(2): 597-607.

[23]

Zhang R, Xiao W, Ding Y, Feng Y, Peng X, Shen L, . Recording brain activities in unshielded earth’s field with optically pumped atomic magnetometers. Science Advances, 2020, 6(24): 8792.

[24]

Bison G, Wynands R, Weis A. Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor. Optics Express, 2003, 11(8): 904-909.

[25]

Pena M E, Pearson C L, Goulet M P, Kazan V M, DeRita A L, Szpunar S M, . A 90-second magnetocardiogram using a novel analysis system to assess for coronary artery stenosis in emergency department observation unit chest pain patients. IJC Heart & Vasculature, 2020, 26, 100466.

[26]

Sengottuvel S, Devi S S, Sasikala M, Satheesh S, Selvaraj R J. An epoch based methodology to denoise magnetocardiogram (MCG) signals and its application to measurements on subjects with implanted devices. Biomedical Physics & Engineering Express, 2021, 7(3): 035006.

[27]

Yang Y, Xu M, Liang A, Yin Y, Ma X, Gao Y, . A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array. Scientific Reports, 2021, 11(1): 1-11.

[28]

Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Physical Review Letters, 1973, 31(5): 273.

[29]

Allred J, Lyman R, Kornack T, Romalis M V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Physical Review Letters, 2002, 89(13): 130801.

[30]

Kominis I, Kornack T, Allred J, Romalis M V. A subfemtotesla multichannel atomic magnetometer. Nature, 2003, 422(6932): 596-599.

[31]

Zhang S, Lu J, Ye M, Zhou Y, Yin K, Lu F, . Optimal operating temperature of miniaturized optically pumped magnetometers. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-7.

[32]

Z. Li, “Development of a parametrically modulated serf magnetometer,” Ph.D. dissertation, The University of Wisconsin-Madison, 2006.

[33]

Iivanainen J, Zetter R, Grön M, Hakkarainen K, Parkkonen L. On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers. Neuroimage, 2019, 194, 244-258.

[34]

Holmes N, Leggett J, Boto E, Roberts G, Hill R M, Tierney T M, . A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. NeuroImage, 2018, 181, 760-774.

[35]

Wang J, Song X, Zhou W, Le Y, Ning X. Hybrid optimal design of biplanar coils with uniform magnetic field or field gradient. IEEE Transactions on Industrial Electronics, 2020, 68(11): 11544-11553.

[36]

Ding Z, Huang Z, Pang M, Han B. Iterative optimization algorithm to design bi-planar coils for dynamic magnetoencephalography. IEEE Transactions on Industrial Electronics, 2022, 70(2): 2085-2094.

[37]

Holmes N, Tierney T M, Leggett J, Boto E, Mellor S, Roberts G, . Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography. Scientific Reports, 2019, 9(1): 1-15.

[38]

Seltzer S, Romalis M. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Applied Physics Letters, 2004, 85(20): 4804-4806.

[39]

Li Z, Wakai R T, Walker T G. Parametric modulation of an atomic magnetometer. Applied Physics Letters, 2006, 89(13): 134105.

[40]

Fang J, Qin J. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer. Review of Scientific Instruments, 2012, 83(10): 103104.

[41]

Dong H, Lin H, Tang X. Atomic-signal-based zero-field finding technique for unshielded atomic vector magnetometer. IEEE Sensors Journal, 2012, 13(1): 186-189.

[42]

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton University, 2008.

[43]

Smith E. Uncertainty analysis. Encyclopedia of Environmetrics, 2002, 4, 2283-2297.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/