A Broadband Achromatic Dielectric Planar Metalens in Mid-IR Range

Ye Yuan , Zilong Yan , Peifeng Zhang , Zhu Chang , Fengjiang Peng , Ruotong Chen , Zhenyuan Yang , Shizheng Chen , Qing Zhao , Xiaoping Huang

Photonic Sensors ›› 2022, Vol. 13 ›› Issue (1) : 230126

PDF
Photonic Sensors ›› 2022, Vol. 13 ›› Issue (1) : 230126 DOI: 10.1007/s13320-022-0667-4
Regular

A Broadband Achromatic Dielectric Planar Metalens in Mid-IR Range

Author information +
History +
PDF

Abstract

Metalens are planar lenses composed of the subwavelength arrays, which have unconventional and versatile functionalities to manipulate the light fields compared with the traditional lens. It is noted that the most metalens are designed in a monochromatic mode in the visible or mid-infrared range (mid-IR), however, the broadband range is needed in many practical applications, such as spectroscopy, sensing, and imaging. Here, we design and demonstrate a broadband achromatic dielectric metalens in the mid-IR range of 4 µm–5 µm for near diffraction-limited (1.0λ) focusing. The broadband achromatic propagation and focusing of the metalens are designed and simulated by constructing and optimizing the phase profile. The Pancharatnam-Berry (P-B) phases of all the elements contribute to the main phase increment of the whole phase profile of the metalens. The additional phase is constructed and optimized by using the random search algorithm to obtain the optimized size of all the elements. The focusing efficiency of the achromatic metalens is also optimized and averaged as the result of phase optimization within a wide band for the building elements, while it is lowered comparing with the regular metalens without broadband achromatic designing. Using this combined designing approach, various flat achromatic devices with the broadband metalens can find a new way for full-color detection and imaging.

Keywords

Broadbands / achromatic / metalens / mid-IR

Cite this article

Download citation ▾
Ye Yuan, Zilong Yan, Peifeng Zhang, Zhu Chang, Fengjiang Peng, Ruotong Chen, Zhenyuan Yang, Shizheng Chen, Qing Zhao, Xiaoping Huang. A Broadband Achromatic Dielectric Planar Metalens in Mid-IR Range. Photonic Sensors, 2022, 13(1): 230126 DOI:10.1007/s13320-022-0667-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L, Ding J, Zheng H Y, An S S, Lin H T, Zheng B W, . Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9(1): 1-9.

[2]

Yang Y, Zhao Q, Liu L, Liu Y, Rosales-Guzmán C, Qiu C W. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Physical Review Applied, 2019, 12(6): 064007.

[3]

Sun P, Zhang M, Dong F, Feng L, Chu W. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared. Chinese Optics Letters, 2022, 20(1): 013601.

[4]

Cui Y, Zheng G, Chen M, Zhang Y, Yang Y, Tao J, . Reconfigurable continuous-zoom metalens in visible band. Chinese Optics Letters, 2019, 17(11): 111603.

[5]

Li F F, Liu H J, Huang N, Wang Z L. Near infrared step-zoom doublet lens based on dielectric metasurfaces. Journal of Optics, 2018, 20(7): 075105.

[6]

Khorasaninejad M, Capasso F. Metalens: versatile multifunctional photonic components. Science, 2017, 358, 1146.

[7]

Zhang S Y, Kim M H, Aieta F, She A, Mansuripur T, Gabay I, . High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Optics Express, 2016, 24(16): 18024-18034.

[8]

Wang A, Chen Z M, Dan Y P. Planar metalens in the mid-infrared. AIP Advances, 2019, 9(8): 085327.

[9]

Liu T, Hu J, Zhu L, Zhou R, Zhang C, Wang C, . Large effective aperture metalens based on optical sparse aperture system. Chinese Optics Letters, 2020, 18(10): 100001.

[10]

Zhao Y, Su Y, Hou X, Hong M. Directional sliding of water: biomimetic snake scale surfaces. Opto-Electronic Advances, 2021, 4(4): 04210008.

[11]

Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalens at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352, 1190-1194.

[12]

Saeidia C, Weide D V D. Wideband plasmonic focusing metasurfaces. Applied Physics Letters, 2014, 105(5): 053107.

[13]

Ee H S, Park H G. Design of tunable silicon metasurfaces with cross-polarization transmittance over 80%. Physica Scripta, 2018, 93(8): 085501.

[14]

Li R Z, Shen F, Sun Y X, Wang W, Zhu L, Guo Z Y. Broadband, high-efficiency, arbitrary focusing lens by a holographic dielectric meta-reflectarray. Journal of Physics D: Applied Physics, 2016, 49(14): 145101.

[15]

Zhang F, Yu H L, Fang J W, Zhang M, Chen S C, Wang J, . Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface. Optics Express, 2016, 24(6): 6656-6664.

[16]

Chen M K, Wu Y F, Feng L, Fan Q B, Lu M H, Xu T, . Principles, functions, and applications of optical meta-lens. Advanced Optical Materials, 2021, 9(4): 2001414.

[17]

Li L, Liu Z X, Ren X F, Wang S M, Su V, Chen M K, . Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368(6498): 1487-1490.

[18]

Zhao M X, Chen M K, Zhuang Z P, Zhang Y W, Chen A, Chen QM, . Phase characterization of metalens. Light: Science & Applications, 2021, 10(4): 551-561.

[19]

Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342-1345.

[20]

Wang Q, Zhang X Q, Xu Y H, Tian Z, Gu J Q, Yue W S, . A broadband metasurface-based terahertz flat-lens array. Advanced Optical Materials, 2015, 3(6): 779-785.

[21]

Liang H W, Lin Q L, Xie X S, Sun Q, Wang Y, Zhou L D, . Ultrahigh numerical aperture metalens at visible wavelengths. Nano Letters, 2018, 18(7): 4460-4466.

[22]

Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937-943.

[23]

Li K, Guo Y I, Pu M B, Li X, Ma X L, Zhao Z Y, . Dispersion controlling meta-lens at visible frequency. Optics Express, 2017, 25(18): 21419-21427.

[24]

Yu N F, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13, 139-140.

[25]

Li Z, Palacio E, Butun S, Aydin K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Letters, 2015, 15(3): 1615-1621.

[26]

Wang S M, Wu P C, Vin-Cent S, Yi-Chieh L, Chu C H, Jia-Wern C, . Broadband achromatic optical metasurface devices. Nature Communications, 2017, 8(1): 1-9.

[27]

Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, . Achromatic metasurface lens at telecommunication wavelengths. Nano Letters, 2015, 15(8): 5358-5363.

[28]

Lin D, Fan P Y, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298-302.

[29]

Hsiao H H, Chen Y H, Lin R J, Wu P C, Wang S M, Chen B H, . Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Advanced Optical Materials, 2018, 6(12): 1800021.

[30]

Ou K, Yu F L, Li G H, Wang W J, Miroshnichenko A E, Huang L J, . Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6(37): eabc0711.

[31]

Shrestha S, Overvig A C, Lu M, Stein A, Yu N F. Broadband achromatic dielectric metalens. Light: Science & Applications, 2018, 7(1): 1-11.

[32]

Zhang Z J, Cui Z C, Liu Y, Wang S C, Staude I, Yang Z Y, . Design of a broadband achromatic dielectric metalens for linear polarization in the near-infrared spectrum. OSA Continum, 2018, 1(3): 882-890.

[33]

Wang Y J, Chen Q M, Yang W H, Ji Z H, Jin L M, Ma X, . High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nature Communications, 2021, 12(1): 1-7.

[34]

Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H, . A broadband achromatic metalens in the visible. Nature Nanotechnology, 2018, 13(3): 227-232.

[35]

Chen W, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, . A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220-226.

[36]

Guo Z L, Tian L H, Shen F, Zhou H P, Guo K. Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface. Journal of Physics D: Applied Physics, 2017, 50(25): 254001.

[37]

Chandler-Horowitz D, Amirtharaj P M. High-accuracy, midinfrared (450 cm−1ω ≤ 4 000 cm−1) refractive index values of silicon. Journal of Applied Physics, 2005, 97(12): 123526.

[38]

Herzberge M, Salzber C D. Refractive indices of infrared optical materials and color correction of infrared lenses. Journal of the Optical Society of America, 1962, 52(4): 420-427.

[39]

Chen W T, Zhu A Y, Sisler J, Huang Y W, Yousef K M A, Lee E, . Broadband achromatic metasurface-refractive optics. Nano Letters, 2018, 18(12): 7801-7808.

[40]

Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R, Gaburro Z, . Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters, 2012, 12(9): 4932-4936.

[41]

Ni W H, Kou X H, Yang Z, Wang J F. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano, 2009, 2(4): 677-686.

[42]

Su W, Li X Y, Bornemann J, Gordon R. Theory of nanorod antenna resonances including end-reflection phase. Physical Review B, 2015, 91(16): 165401.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/