Alternative Interpretation of Speckle Autocorrelation Imaging Through Scattering Media

Honglin Liu , Puxiang Lai , Jingjing Gao , Zhentao Liu , Jianhong Shi , Shensheng Han

Photonic Sensors ›› 2021, Vol. 12 ›› Issue (3) : 220308

PDF
Photonic Sensors ›› 2021, Vol. 12 ›› Issue (3) : 220308 DOI: 10.1007/s13320-022-0654-9
Regular

Alternative Interpretation of Speckle Autocorrelation Imaging Through Scattering Media

Author information +
History +
PDF

Abstract

High-resolution optical imaging through or within thick scattering media is a long sought after yet unreached goal. In the past decade, the thriving technique developments in wavefront measurement and manipulation do not significantly push the boundary forward. The optical diffusion limit is still a ceiling. In this work, we propose that a scattering medium can be conceptualized as an assembly of randomly packed pinhole cameras and the corresponding speckle pattern as a superposition of randomly shifted pinhole images. The concept is demonstrated through both simulation and experiments, confirming the new perspective to interpret the mechanism of information transmission through scattering media under incoherent illumination. We also analyze the efficiency of single-pinhole and dual-pinhole channels. While in infancy, the proposed method reveals a new perspective to understand imaging and information transmission through scattering media.

Keywords

Imaging / scattering media / pinhole / information channel / autocorrelation / transport mean free path / random phasemask

Cite this article

Download citation ▾
Honglin Liu, Puxiang Lai, Jingjing Gao, Zhentao Liu, Jianhong Shi, Shensheng Han. Alternative Interpretation of Speckle Autocorrelation Imaging Through Scattering Media. Photonic Sensors, 2021, 12(3): 220308 DOI:10.1007/s13320-022-0654-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yaqoob Z, Psaltis D, Feld M S, Yang C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photonics, 2008, 2(2): 110-115.

[2]

Farahi S, Montemezzani G, Grabar A A, Huignard J P, Ramaz F. Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te. Optics Letters, 2010, 35(11): 1798-1800.

[3]

Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photonics, 2011, 5(3): 154-157.

[4]

Wang Y M, Judkewitz B, Di Marzio C A, Yang C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound encoded light. Nature Communications, 2012, 3(1): 1-8.

[5]

Liu Y, Ma C, Shen Y, Shi J, Wang L V. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. Optica, 2017, 4(2): 280-288.

[6]

Pang G, Liu H, Hou P, Qiao M, Han S. Optical phase conjugation of diffused light with infinite gain by using gated two-color photorefractive crystal LiNbO3:Cu:Ce. Applied Optics, 2018, 57(10): 2675-2678.

[7]

Ryu J, Jang M, Eom T J, Yang C, Chung E. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning. Scientific Reports, 2016, 6(1): 1-8.

[8]

Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media. Optics Letters, 2007, 32(16): 2309-2311.

[9]

Ji N, Milkie D E, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods, 2010, 7(2): 141-147.

[10]

Akbulut D, Huisman T J, Van Putten E G, Vos W L, Mosk A P. Focusing light through random photonic media by binary amplitude modulation. Optics Express, 2011, 19(5): 4017-4029.

[11]

Fiolka R, Si K, Cui M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Optics Express, 2012, 20(15): 16532-16543.

[12]

Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nature Photonics, 2015, 9(9): 563-571.

[13]

Lai P, Wang L, Tay J W, Wang L V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nature Photonics, 2015, 9(2): 126-132.

[14]

Yu H, Park J, Lee K, Yoon J, Kim K, Lee S, . Recent advances in wavefront shaping techniques for biomedical applications. Applied Physics, 2015, 15(5): 632-641.

[15]

Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Physical Review Letters, 2010, 104(10): 100601.

[16]

Yu H, Hillman T R, Choi W, Lee J O, Feld M S, Dasari R R, . Measuring large optical transmission matrices of disordered media. Physical Review Letters, 2013, 111(15): 153902.

[17]

Goetschy A, Stone A D. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Physical Review Letters, 2013, 111(6): 063901.

[18]

Choi Y, Hillman T R, Choi W, Lue N, Dasari R R, So P T C, . Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium. Physical Review Letters, 2013, 111(24): 243901.

[19]

Kim M, Choi W, Choi Y, Yoon C, Choi W. Transmission matrix of a scattering medium and its applications in biophotonics. Optics Express, 2015, 23(10): 12648-12668.

[20]

Zhang E, Laufer J, Pedley R, Beard P. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Physics in Medicine & Biology, 2009, 54(4): 1035.

[21]

Xu X, Kothapalli S R, Liu H, Wang L V. Spectral hole burning for ultrasound-modulated optical tomography of thick tissue. Journal of Biomedical Optics, 2010, 15(6): 066018.

[22]

Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 2012, 335(6075): 1458-1462.

[23]

Chen Z, Yang S, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging. Optics Letters, 2016, 41(7): 1636-1639.

[24]

Song W, Xu Q, Zhang Y, Zhan Y, Zheng W, Song L. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo. Scientific Reports, 2016, 6(1): 1-8.

[25]

Aftab, Cheung, Kim, Thakkar, Yeddanapudi, “Information theory & the digital revolution,” 6.933 Project History, Massachusetts Institute of Technology, SNAPES@MIT. EDU.

[26]

Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P. Non-invasive imaging through opaque scattering layers. Nature, 2012, 491(7423): 232-234.

[27]

Katz O, Heidmann P, Fink M, Gigan S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photonics, 2014, 8(10): 784-790.

[28]

Cua M, Zhou E, Yang C. Imaging moving targets through scattering media. Optics Express, 2017, 25(4): 3935-3945.

[29]

Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object. Scientific Reports, 2018, 8(1): 1-7.

[30]

Guo C, Liu J, Wu T, Zhu L, Shao X. Tracking moving targets behind a scattering medium via speckle correlation. Applied Optics, 2018, 57(4): 905-913.

[31]

Liu H, Wang X, Gao J, Yu T, Han S. Seeing through dynamics scattering media: Suppressing diffused reflection based on decorrelation time difference. Journal of Innovative Optical Health Sciences, 2019, 12(04): 1942001.

[32]

Guo C, Liu J, Li W, Wu T, Zhu L, Wang J, . Imaging through scattering layers exceeding memory effect range by exploiting prior information. Optics Communications, 2019, 434, 203-208.

[33]

Wang X, Jin X, Li J, Lian X, Ji X, Dai Q. Prior-information-free single-shot scattering imaging beyond the memory effect. Optics Letters, 2019, 44(6): 1423-1426.

[34]

Chen M, Liu H, Liu Z, Lai P, Han S. Expansion of the FOV in speckle autocorrelation imaging by spatial filtering. Optics Letters, 2019, 44(24): 5997-6000.

[35]

Feng S, Kane C, Lee P A, Stone A D. Correlations and fluctuations of coherent wave transmission through disordered media. Physical Review Letters, 1988, 61(7): 834.

[36]

Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media. Physical Review Letters, 1988, 61(20): 2328.

[37]

Schott S, Bertolotti J, Léger J, Bourdieu L, Gigan S. Characterization of the angular memory effect of scattered light in biological tissue. Optics Express, 2015, 23(10): 13505-13516.

[38]

Yang J, Li J, He S, Wang L V. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation. Optica, 2019, 6(3): 250-256.

[39]

Liu H, Liu Z, Chen M, Han S, Wang L V. Physical picture of the optical memory effect. Photonics Research, 2019, 7(11): 1323-1330.

[40]

Fienup J R. Phase retrieval algorithms: a comparison. Applied Optics, 1982, 21(15): 2758-2769.

[41]

Teague M R. Deterministic phase retrieval: a Green’s function solution. Journal of the Optical Society of America, 1983, 73(11): 1434-1441.

[42]

Gonsalves R A. Phase retrieval and diversity in adaptive optics. Optical Engineering, 1982, 21(5): 215829.

[43]

Walther A. The question of phase retrieval in optics. Optica Acta: International Journal of Optics, 1963, 10(1): 41-49.

[44]

Sinha S K, Sirota E B, Garoff S, Stanley H B. X-ray and neutron scattering from rough surfaces. Physical Review B, 1988, 38(4): 2297.

[45]

Zhao Y-P, Wu I, Cheng C F, Block U, Wang G C, Lu T M. Characterization of random rough surfaces by in-plane light scattering. Journal of Applied Physics, 1998, 84(5): 2571-2582.

[46]

Goodman J W. Introduction to Fourier Optics (2nd Edition), 1996, New York: MC Graw-Hill Company Publishers, 130.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/