Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer

Yasmin Mustapha Kamil , Sura Hmoud Al-Rekabi , Muhammad Hafiz Abu Bakar , Yap Wing Fen , Husam Abduldaem Mohammed , Nor Hafizah Mohamed Halip , Mohammed Thamer Alresheedi , Mohd Adzir Mahdi

Photonic Sensors ›› 2021, Vol. 12 ›› Issue (3) : 220306

PDF
Photonic Sensors ›› 2021, Vol. 12 ›› Issue (3) : 220306 DOI: 10.1007/s13320-021-0643-4
Regular

Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer

Author information +
History +
PDF

Abstract

The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb−1, respectively, while the limit of detection for both ions was 0.6 ppb. These findings support the feasibility and potential of the sensor configuration towards paving future advancement in As detection systems.

Keywords

Surface plasmon resonance / di-iron trioxide hydrate / arsenic / heavy metals ion / optical sensor

Cite this article

Download citation ▾
Yasmin Mustapha Kamil, Sura Hmoud Al-Rekabi, Muhammad Hafiz Abu Bakar, Yap Wing Fen, Husam Abduldaem Mohammed, Nor Hafizah Mohamed Halip, Mohammed Thamer Alresheedi, Mohd Adzir Mahdi. Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer. Photonic Sensors, 2021, 12(3): 220306 DOI:10.1007/s13320-021-0643-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shaji E, Santosh M, Sarath K V, Prakash P, Deepchand V, Divya B V. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 2021, 12(3): 101079.

[2]

Shankar S, Shanker U, Shikha. Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. The Scientific World Journal, 2014, 2014, 304524.

[3]

Zhang L, Chen X R, Wen S H, Liang R P, Qiu J D. Optical sensors for inorganic arsenic detection. TrAC Trends in Analytical Chemistry, 2019, 118, 869-879.

[4]

Fernández-Luqueño F, López-Valdez F, Gamero P, Luna S, Aguilera-González E N, Martinez A, . Heavy metal pollution in drinking water-a global risk for human health: A review. African Journal of Environmental Science and Technology, 2013, 7(7): 567-584.

[5]

Thakkar S, Dumée L F, Gupta M, Singh B R, Yang W. Nano-enabled sensors for detection of arsenic in water. Water Research, 2021, 188, 116538.

[6]

Saha S, Sarkar P. Differential pulse anodic stripping voltammetry for detection of As(III) by chitosan-Fe(OH)3 modified glassy carbon electrode: a new approach towards speciation of arsenic. Talanta, 2016, 158, 235-245.

[7]

Mays D E, Hussam A. Voltammetric methods for determination and speciation of inorganic arsenic in the environment—a review. Analytica Chimica Acta, 2009, 646(1–2): 6-16.

[8]

Forzani E S, Foley K, Westerhoff P, Tao N. Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2007, 123(1): 82-88.

[9]

Reyes Y C, Coy L E, Yate L, Jurga S, González E E. Nanostructured and selective filter to improve detection of arsenic on surface plasmon nanosensors. ACS Sensors, 2016, 1(6): 725-731.

[10]

Sadrolhosseini A R, Naseri M, Kamari H M. Surface plasmon resonance sensor for detecting of arsenic in aqueous solution using polypyrrolechitosan-cobalt ferrite nanoparticles composite layer. Optics Communications, 2017, 383, 132-137.

[11]

Yao Y, Miao S, Yu S, Ma L P, Sun H, Wang S. Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. Journal of Colloid and Interface Science, 2012, 379(1): 20-26.

[12]

Solanki P R, Prabhakar N, Pandey M K, Malhotra B D. Surface plasmon resonance-based DNA biosensor for arsenic trioxide detection. International Journal of Environmental Analytical Chemistry, 2009, 89(1): 49-57.

[13]

Das A, Mohanty S, Kuanr B K. Label-free gold nanorod-based plasmonic sensing of arsenic(iii) in contaminated water. Analyst, 2019, 144(15): 4708-4718.

[14]

Li T, Feng W. Fiber-optic surface plasmon resonance sensor for trace cadmium-ion detection based on Ag-PVA/TiO2 sensing membrane. IEEE Sensors Journal, 2021, 21(17): 18650-18655.

[15]

Al-Rekabi S H, Kamil Y M, Bakar M H A, Fen Y W, Lim H N, Kanagesan S, . Hydrous ferric oxide-magnetite-reduced graphene oxide nanocomposite for optical detection of arsenic using surface plasmon resonance. Optics & Laser Technology, 2019, 111, 417-423.

[16]

Kamil Y M, Al-Rekabi S H, Mohamed H A, Bakar M H A, Kanagesan S, Fen Y W, . Di-iron trioxide hydrate-multi-walled carbon nanotube nanocomposite for arsenite detection using surface plasmon resonance technique. IEEE Photonics Journal, 2019, 11(4): 1-9.

[17]

Guo Y, Di C, Liu H, Zheng J, Zhang L, Yu G, . General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating. ACS Nano, 2010, 4(10): 5749-5754.

[18]

Stebunov Y V, Aftenieva O A, Arsenin A V, Volkov V S. Highly sensitive and selective sensor chips with graphene oxide linking layer. ACS Applied Materials & Interfaces, 2015, 7(39): 21727-21734.

[19]

Varma A. CRC Handbook of Atomic Absorption Analysis, 1984, America: CRC Press

[20]

Eaton A D, Wang H C, Northington J, Foundation A R. Analytical Chemistry of Arsenic in Drinking Water, 1998, America: AWWA Research Foundation and American Water Works Association

[21]

Borah D, Satokawa S, Kato S, Kojima T. Surface-modified carbon black for As(V) removal. Journal of colloid and interface science, 2008, 319(1): 53-62.

[22]

Yoon Y, Park W K, Hwang T M, Yoon D H, Yang W S, Kang J W. Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. Journal of Hazardous Materials, 2016, 304, 196-204.

[23]

Dixit S, Hering J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 2003, 37(18): 4182-4189.

[24]

Sherman D M, Randall S R. Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 2003, 67(22): 4223-4230.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/