All-SiC Fiber-Optic Sensor Based on Direct Wafer Bonding for High Temperature Pressure Sensing

Ting Liang , Wangwang Li , Cheng Lei , Yongwei Li , Zhiqiang Li , Jijun Xiong

Photonic Sensors ›› 2021, Vol. 12 ›› Issue (2) : 130 -139.

PDF
Photonic Sensors ›› 2021, Vol. 12 ›› Issue (2) : 130 -139. DOI: 10.1007/s13320-021-0640-7
Regular

All-SiC Fiber-Optic Sensor Based on Direct Wafer Bonding for High Temperature Pressure Sensing

Author information +
History +
PDF

Abstract

This paper presents an all-SiC fiber-optic Fabry-Perot (FP) pressure sensor based on the hydrophilic direct bonding technology for the applications in the harsh environment. The operating principle, fabrication, interface characteristics, and pressure response test of the proposed all-SiC pressure sensor are discussed. The FP cavity is formed by hermetically direct bonding of two-layer SiC wafers, including a thinned SiC diaphragm and a SiC wafer with an etched cavity. White light interference is used for the detection and demodulation of the sensor pressure signals. Experimental results demonstrate the sensing capabilities for the pressure range up to 800 kPa. The all-SiC structure without any intermediate layer can avoid the sensor failure caused by the thermal expansion coefficient mismatch and therefore has a great potential for pressure measurement in high temperature environments.

Keywords

SiC / pressure sensor / optical-fiber / high temperature / direct bonding

Cite this article

Download citation ▾
Ting Liang, Wangwang Li, Cheng Lei, Yongwei Li, Zhiqiang Li, Jijun Xiong. All-SiC Fiber-Optic Sensor Based on Direct Wafer Bonding for High Temperature Pressure Sensing. Photonic Sensors, 2021, 12(2): 130-139 DOI:10.1007/s13320-021-0640-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pulliam W J, Fielder R S, Russler P M. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing. SPIE, 2002, 4578, 229-238.

[2]

Zhu Y Z, Cooper K L, Pickrell G R, Wang A B. High-temperature fiber-tip pressure sensor. Journal of Lightwave Technology, 2006, 24(2): 861-869.

[3]

Okojie R S, Lukco D, Nguyen V, Savrun E. 4H-SiC piezoresistive pressure sensors at 800 °C with observed sensitivity recovery. IEEE Electron Device Letters, 2015, 36(2): 174-176.

[4]

Yao Z, Liang T, Jia P G, Hong Y P, Qi L, Lei C, . A high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit. Sensors, 2016, 16(6): 913.

[5]

Ren J, Ward M, Kinnell P, Craddock R, Wei X Y. Plastic deformation of micromachined silicon diaphragms with a sealed cavity at high temperatures. Sensors, 2016, 16(2): 204.

[6]

Phan H P, Cheng H H, Dinh T, Wood B, Nguyen T K, Mu F, . Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications. ACS Applied Materials & Interfaces, 2017, 9(33): 27365-27371.

[7]

Mu F W, Wang Y H, He R, Suga T. Direct wafer bonding of GaN-SiC for high power GaN-on-SiC devices. Materialia, 2018, 3, 12-14.

[8]

Marsi N, Majlis B Y, Hamzah A A, Yasin F M. A MEMS packaged capacitive pressure sensor employing 3C-SiC with operating temperature of 500 °C. Microsystem Technologies, 2015, 21(1): 9-20.

[9]

Nguyen T K, Phan H P, Dinh T, Dowling K M, Foisal A R M, Senesky D G, . Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures. Materials & Design, 2018, 156, 441-445.

[10]

Wieczorek G, Schellin B, Obermeier E, Fagnani G, Drera L. SiC based pressure sensor for high-temperature environments. IEEE Sensors, 2007, 28, 748-751.

[11]

Beker L, Maralani A, Lin L W, Pisano A P. Modeling, fabrication, and characterization of SiC concentrically matched differential capacitance output pressure sensors. Sensors and Actuators A: Physical, 2018, 273, 293-302.

[12]

Marsi N, Majlis B Y, Hamzah A A, Yasin F M. Development of high temperature resistant of 500 °C employing silicon carbide (3C-SiC) based MEMS pressure sensor. Microsystem Technology, 2015, 21(2): 319-330.

[13]

Xu F, Ren D X, Shi X L, Li C, Liu W W, Lu L, . High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm. Optics Letters, 2012, 37(2): 133-135.

[14]

Ma J, Jin W, Ho H L, Dai J Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Optics Letters, 2012, 37(13): 2493-2495.

[15]

Wang W H, Wu N, Tian Y, Niezrecki C, Wang X W. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Optics Express, 2010, 18(9): 9006-9014.

[16]

Liu T G, Yin J D, Jiang J F, Liu K, Wang S, Zou S L. Differential-pressure-based fiber-optic temperature sensor using Fabry-Perot interferometry. Optics Letters, 2015, 40(6): 1049-1052.

[17]

Yi J, Lally E, Wang A B, Xu Y. Demonstration of an all-sapphire Fabry-Pérot cavity for pressure sensing. IEEE Photonics Technology Letters, 2010, 23, 9-11.

[18]

Zhang Y N, Yuan L, Lan X W, Kaur A, Huang J, Xiao H. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser: erratum. Optics Letters, 2014, 39(1): 4609-4612.

[19]

Ceyssens F, Driesen M, Puers R. An optical absolute pressure sensor for high-temperature applications, fabricated directly on a fiber. Journal of Micromechanics and Microengineering, 2009, 19(11): 115017.

[20]

Pevec S, Donlagic D. Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index. Optics Letters, 2014, 39(21): 6221-6224.

[21]

Xu J C, Wang X W, Cooper K L, Wang A B. Miniature all-silica fiber optic pressure and acoustic sensors. Optics Letters, 2005, 30(24): 3269-3271.

[22]

Liao C R, Liu S, Xu L, Wang C, Wang Y P, Li Z Y, . Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement. Optics Letters, 2014, 39(10): 2827-2830.

[23]

Li Z, Jia P G, Fang G C, Liang H, Liang T, Liu W Y, . Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application. Applied Optics, 2018, 57(8): 1738-1743.

[24]

Liu S, Wang Y P, Liao C R, Wang Y, He J, Fu C L, . Nano silica diaphragm in-fiber cavity for gas pressure measurement. Scientific Reports, 2017, 7(1): 787.

[25]

Pulliam W, Russler P, Mlcak R, Murphy K, Kozikowski C. Micromachined, SiC fiber optic pressure sensors for high-temperature aerospace applications. SPIE, 2000, 30(21): 4202.

[26]

Jiang Y G, Li J, Zhou Z W, Jiang X G, Zhang D Y. Fabrication of all-SiC fiber-optic pressure sensors for high-temperature applications. Sensors, 2016, 16(10): 1660.

[27]

Shen F B, Wang A B. Frequency-estimation-based signal-processing algorithm for white-lightopticalfiber Fabry-Perot interferometers. Applied Optics, 2005, 44(25): 5206.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/