Effect of PMMA Removal Methods on Opto-Mechanical Behaviors of Optical Fiber Resonant Sensor With Graphene Diaphragm

Yujian Liu , Cheng Li , Shangchun Fan , Xuefeng Song

Photonic Sensors ›› 2021, Vol. 12 ›› Issue (2) : 140 -151.

PDF
Photonic Sensors ›› 2021, Vol. 12 ›› Issue (2) : 140 -151. DOI: 10.1007/s13320-021-0636-3
Regular

Effect of PMMA Removal Methods on Opto-Mechanical Behaviors of Optical Fiber Resonant Sensor With Graphene Diaphragm

Author information +
History +
PDF

Abstract

Regarding the dependence of the treatment of removing polymethyl methacrylate (PMMA) from graphene upon the prestress in the film, two typical PMMA removal methods including acetone-vaporing and high-temperature annealing were investigated based on the opto-mechanical behaviors of the developed optical fiber Fabry-Perot (F-P) resonant sensor with a 125-µm diameter and ∼10-layer-thickness graphene diaphragm. The measured resonant responses showed that the F-P sensor via annealing process exhibited the resonant frequency of 481 kHz and quality factor of 1 034 at ∼2 Pa and room temperature, which are respectively 2.5 times and 33 times larger than the acetone-treated sensor. Moreover, the former achieved a high sensitivity of 110.4 kHz/kPa in the tested range of 2 Pa–2.5 kPa, apparently superior to the sensitivity of 16.2 kHz/kPa obtained in the latter. However, the time drift of resonant frequency also mostly tended to occur in the annealed sensor, thereby shedding light on the opto-mechanical characteristics of graphene-based F-P resonant sensors, along with an optimized optical excitation and detection scheme.

Keywords

Graphene diaphragm / PMMA removal / opto-mechanical behavior / F-P resonator

Cite this article

Download citation ▾
Yujian Liu, Cheng Li, Shangchun Fan, Xuefeng Song. Effect of PMMA Removal Methods on Opto-Mechanical Behaviors of Optical Fiber Resonant Sensor With Graphene Diaphragm. Photonic Sensors, 2021, 12(2): 140-151 DOI:10.1007/s13320-021-0636-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.

[2]

Sakamoto J, van Heijst J, Lukin O, Schlüter A D. Two-dimensional polymers: just a dream of synthetic chemists. Angewandte Chemie International Edition, 2009, 48(6): 1030-1069.

[3]

Bonaccorso F, Sun Z, Hasan T A, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611-622.

[4]

Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, . Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902-907.

[5]

Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, . Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210-215.

[6]

Cen C, Zhang Y, Chen X, Yang H, Yi Z, Yao W, . A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Physica E: Low-dimensional Systems and Nanostructures, 2020, 117, 113840.

[7]

Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, . Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial. Diamond and Related Materials, 2021, 111(1): 108227.

[8]

Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, . Multi-band multi-tunable perfect plasmon absorber based on L-shaped and double-elliptical graphene stacks. Diamond and Related Materials, 2021, 115, 108374.

[9]

He Z, Li L, Ma H, Pu L, Xu H, Yi Z, . Graphene-based metasurface sensing applications in terahertz band. Results in Physics, 2021, 21, 103795.

[10]

Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, . Electromechanical resonators from graphene sheets. Science, 2007, 315(5811): 490-493.

[11]

Jiang J W, Wang J S, Li B. Young’s modulus of graphene: a molecular dynamics study. Physical Review B, 2009, 80(11): 113405.

[12]

Cui T, Mukherjee S, Sudeep P M, Colas G, Najafi F, Tam J, . Fatigue of graphene. Nature Materials, 2020, 19(4): 405-411.

[13]

Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, . Impermeable atomic membranes from graphene sheets. Nano Letters, 2008, 8(8): 2458-2462.

[14]

Singh V, Sengupta S, Solanki H S, Dhall R, Allain A, Dhara S, . Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology, 2010, 21(16): 165204.

[15]

van der Zande A M, Barton R A, Alden J S, Ruiz-Vargas C S, Whitney W S, Pham P H Q, . Large-scale arrays of single-layer graphene resonators. Nano Letters, 2010, 10(12): 4869-4873.

[16]

Miller D, Alemán B. Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators. 2D Materials, 2017, 4(2): 025101.

[17]

Song X, Oksanen M, Sillanpää M A, Craighead H G, Parpia J M, Hakonen P J. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout. Nano Letters, 2012, 12(1): 198-202.

[18]

Guan F, Kumaravadivel P, Averin D V, Du X. Tuning strain in flexible graphene nano-electromechanical resonators. Applied Physics Letters, 2015, 107(19): 193102.

[19]

Garcia-Sanchez D, van der Zande A M, Paulo A S, Lassagne B, McEuen P L, Bachtold A. Imaging mechanical vibrations in suspended graphene sheets. Nano Letters, 2008, 8(5): 1399-1403.

[20]

Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, . Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotechnology, 2009, 4(12): 861-867.

[21]

Barton R A, Ilic B, van der Zande A M, Whitney W S, McEuen P L, Parpia J M, . High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Letters, 2011, 11(3): 1232-1236.

[22]

Ma J, Jin W, Xuan H, Wang C, Ho H L. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film. Optics Letters, 2014, 39(16): 4769-4772.

[23]

Larsen T, Schmid S, Villanueva L G, Boisen A. Photothermal analysis of individual nanoparticulate samples using micromechanical resonators. ACS Nano, 2013, 7(7): 6188-6193.

[24]

Ramos D, Malvar O, Davis Z J, Tamayo J, Calleja M. Nanomechanical plasmon spectroscopy of single gold nanoparticles. Nano Letters, 2018, 18(11): 7165-7170.

[25]

Her M, Beams R, Novotny L. Graphene transfer with reduced residue. Physics Letters A, 2013, 377(21–22): 1455-1458.

[26]

Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, . Toward clean and crackless transfer of graphene. ACS Nano, 2011, 5(11): 9144-9153.

[27]

Kang J, Shin D, Bae S, Hong B H. Graphene transfer: key for applications. Nanoscale, 2012, 4(18): 5527-5537.

[28]

Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, . Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706-710.

[29]

Kang S J, Kim B, Kim K S, Zhao Y, Chen Z, Lee G H, . Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs. Advanced Materials, 2011, 23(31): 3531-3535.

[30]

Cha S, Cha M, Lee S, Kang J H, Kim C. Low-temperature, dry transfer-printing of a patterned graphene monolayer. Scientific Reports, 2015, 5(1): 17877.

[31]

Ali U, Karim K J B A, Buang N A. A review of the properties and applications of Poly (Methyl Methacrylate) (PMMA). Polymer Reviews, 2015, 55(4): 678-705.

[32]

Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, . Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30-35.

[33]

Schmid S, Bagci T, Zeuthen E, Taylor J M, Herring P K, Cassidy M C, . Single-layer graphene on silicon nitride micromembrane resonators. Journal of Applied Physics, 2014, 115(5): 054513.

[34]

Barin G B, Song Y, Gimenez I F, Filho A G S, Barreto L S, Kong J. Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon, 2015, 84, 82-90.

[35]

Mathiesen D, Vogtmann D, Dupaix R B. Characterization and constitutive modeling of stress-relaxation behavior of Poly (methyl methacrylate) (PMMA) across the glass transition temperature. Mechanics of Materials, 2014, 71, 74-84.

[36]

Zeng W R, Li S F, Chow W K. Review on chemical reactions of burning Poly (methyl methacrylate) PMMA. Journal of Fire Sciences, 2002, 20(5): 401-433.

[37]

Süske E, Scharf T, Schaaf P, Panchenko E, Nelke D, Buback M, . Variation of the mechanical properties of pulsed laser deposited PMMA films during annealing. Applied Physics A, 2004, 79(4): 1295-1297.

[38]

Nanzai Y, Miwa A, Cui S Z. Aging in fully annealed and subsequently strained Poly (methyl methacrylate). Polymer Journal, 2000, 32(1): 51-56.

[39]

Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski J L. Thermal degradation of Poly (methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polymer Degradation and Stability, 2003, 79(2): 271-281.

[40]

Li X, Cai W, An J, Kim S, Nah J, Yang D, . Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312-1314.

[41]

Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, . Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotechnology, 2009, 4(9): 562-566.

[42]

Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, . Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Letters, 2010, 10(12): 4944-4951.

[43]

Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Letters, 2011, 11(2): 767-771.

[44]

Southwortha D R, Craighead H G, Parpia J M. Pressure dependent resonant frequency of micromechanical drumhead resonators. Applied Physics Letters, 2009, 94(21): 213506.

[45]

Dolleman R J, Davidovikj D, Cartamil-Bueno S J, van der Zant H S J, Steeneken P G. Graphene squeeze-film pressure sensor. Nano Letters, 2016, 16(1): 568-571.

[46]

Andrews M K, Turner G C, Harris P D, Harris I M. A resonant pressure sensor based on a squeezed film of gas. Sensors and Actuators A: Physical, 1993, 36(3): 219-226.

[47]

Bao M, Yang H. Squeeze film air damping in MEMS. Sensors and Actuators A: Physical, 2007, 136(1): 3-27.

[48]

Rao S S. Vibration of continuous systems, 2007, New Jersey: John Wiley & Sons

[49]

Feng G. Theory and devices of resonant sensing, 2008, Beijing: Tsinghua University Press

[50]

Oshidari Y, Hatakeyama T, Kometani R, Warisawa S, Ishihara S. High-quality factor graphene resonator fabrication using resist shrinkage-induced strain. Applied Physics Express, 2012, 5(11): 117201.

[51]

Olfatnia M, Xu T, Ong L S, Miao J M, Wang Z H. Investigation of residual stress and its effects on the vibrational characteristics of piezoelectric-based multilayered micro-diaphragms. Journal of Micromechanics and Microengineering, 2009, 20(1): 015007.

[52]

Castellanos-Gomez A, van Leeuwen R, Buscema M, van der Zant H S J, Steele G A, Venstra W J. Single-layer MoS2 mechanical resonators. Advanced Materials, 2013, 25(46): 6719-6723.

[53]

Li C, Lan T, Yu X, Bo N, Dong J, Fan S. Room-temperature pressure-induced optically-actuated Fabry-Perot nanomechanical resonator with multilayer graphene diaphragm in air. Nanomaterials, 2017, 7(11): 366.

[54]

Kwak M K. Vibration of circular plates in contact with water. Journal of Applied Mechanics, 1991, 58(2): 480-483.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/