Review on Speckle-Based Spectrum Analyzer

Yangyang Wan , Xinyu Fan , Zuyuan He

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (2) : 187 -202.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (2) : 187 -202. DOI: 10.1007/s13320-021-0628-3
Review

Review on Speckle-Based Spectrum Analyzer

Author information +
History +
PDF

Abstract

Accurate spectral measurement and wavelength determination are fundamental and vital for many fields. A compact spectrum analyzer with high performance is expected to meet the growing requirements, and speckle-based spectrum analyzer is a potential solution. The basic principle is based on using the random medium to establish a speckle-to-wavelength mapping relationship for spectrum reconstruction. This article introduces current speckle-based spectrum analyzers with different schemes and reviews recent advances in this field. Besides, some applications by using speckle-based spectrum analyzers are also introduced. Finally, the existing challenges and the future prospects of using speckle for spectrum recovery are discussed.

Keywords

Speckle / spectrum analyzer / random medium / spectroscopy

Cite this article

Download citation ▾
Yangyang Wan, Xinyu Fan, Zuyuan He. Review on Speckle-Based Spectrum Analyzer. Photonic Sensors, 2020, 11(2): 187-202 DOI:10.1007/s13320-021-0628-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, 58, 267-297.

[2]

Martin P A. Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chemical Society Reviews, 2002, 31(4): 201-210.

[3]

Halvorson R A, Vikesland P J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environmental Science & Technology, 2010, 44(20): 7749-7755.

[4]

Kulesa C. Terahertz spectroscopy for astronomy: From comets to cosmology. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 232-240.

[5]

F. Hoyle, N. Wickramasinghe, S. Al-Mufti, A. Olavesen, and D. Wickramasinghe, “Infrared spectroscopy over the 2.9–3.9 µm waveband in biochemistry and astronomy,” in Astronomical Origins of Life, Springer, 2000, pp. 161–166

[6]

Choo-Smith L-P, Edwards H, Endtz H P, Kros J, Heule F, Barr H, . Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers: Original Research on Biomolecules, 2002, 67(1): 1-9.

[7]

Sakudo A. Near-infrared spectroscopy for medical applications: current status and future perspectives. Clinica Chimica Acta, 2016, 455, 181-188.

[8]

Matsumoto T, Fujita S, Baba T. Wavelength demultiplexer consisting of photonic crystal superprism and superlens. Optics Express, 2005, 13(26): 10768-10776.

[9]

A. T. U. R. O. AP2041B. Available at http://www.apext.com/pdf/optical-spectrum-analyzer.pdf.

[10]

Y. O. AQ6370D. Available at https://www.yokogawa.com/pdf.

[11]

Griffiths P R, De Haseth J A. Fourier transform infrared spectrometry, 2007, New Jersey: John Wiley & Sons, 171.

[12]

Kita D M, Miranda B, Favela D, Bono D, Michon J, Lin H, . High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications, 2018, 9(1): 1-7.

[13]

Souza M C, Grieco A, Frateschi N C, Fainman Y. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nature Communications, 2018, 9(1): 1-8.

[14]

Cheng Q, Duan F, Huang T, Wang J. Forward fiber Fourier transform spectrometer modeling and design with PZT phase modulation real-time compensation. Applied Optics, 2018, 57(18): 5025-5035.

[15]

Chakrabarti M, Jakobsen M L, Hanson S G. Speckle-based spectrometer. Optics Letters, 2015, 40(14): 3264-3267.

[16]

Metzger N K, Spesyvtsev R, Bruce G D, Miller B, Maker G T, Malcolm G, . Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization. Nature Communications, 2017, 8, 15610.

[17]

Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Optics Letters, 2012, 37(16): 3384-3386.

[18]

Çetindağ Ş K K, Toy M F, Ferhanoğlu O, Çivitci F. A speckle-enhanced prism spectrometer with high dynamic range. IEEE Photonics Technology Letters, 2018, 30(24): 2139-2142.

[19]

Çetindağ S K, Toy M F, Ferhanoğlu O, Civitci F. Scattering metal waveguide based speckle-enhanced prism spectrometry. Journal of Lightwave Technology, 2020, 38(7): 2022-2027.

[20]

Wan N H, Meng F, Schröder T, Shiue R-J, Chen E H, Englund D. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nature Communications, 2015, 6(1): 1-6.

[21]

Shamsoddini A, Trinder J C. Image texture preservation in speckle noise suppression. ISPRS TC VII Symposium — 100 Years ISPRS, 2010, 7, 239-244.

[22]

Ha W S, Lee S J, Oh K H, Jung Y M, Kim J K. Speckle reduction in near-field image of multimode fiber with a piezoelectric transducer. Journal of the Optical Society of Korea, 2008, 12(3): 126-130.

[23]

Fujiwara E, dos Santos M F M, Suzuki C K. Optical fiber specklegram sensor analysis by speckle pattern division. Applied Optics, 2017, 56(6): 1585-1590.

[24]

Fujiwara E, da Silva L E, Marques T H, Cordeiro C M. Polymer optical fiber specklegram strain sensor with extended dynamic range. Optical Engineering, 2018, 57(11): 116107.

[25]

Wu P, Zhu S, Hong M, Chen F, Liu H. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd: YAG crystal. Optics & Laser Technology, 2019, 113, 11-14.

[26]

Liu Y, Qin Q, Liu H H, Tan Z W, Wang M G. Investigation of an image processing method of step-index multimode fiber specklegram and its application on lateral displacement sensing. Optical Fiber Technology, 2018, 46, 48-53.

[27]

Cao H. Perspective on speckle spectrometers. Journal of Optics, 2017, 19, 060402.

[28]

Redding B, Liew S F, Sarma R, Cao H. Compact spectrometer based on a disordered photonic chip. Nature Photonics, 2013, 7(9): 746-751.

[29]

Gysel P, Staubli R K. Statistical properties of Rayleigh backscattering in single-mode fibers. Journal of Lightwave Technology, 1990, 8(4): 561-567.

[30]

Healey P. Fading in heterodyne OTDR. Electronics Letters, 1984, 20(1): 30-32.

[31]

Shimizu K, Horiguchi T, Koyamada Y. Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components. Journal of Lightwave Technology, 1992, 10(7): 982-987.

[32]

Zhou J, Pan Z, Ye Q, Cai H, Qu R, Fang Z. Characteristics and explanations of interference fading of a phi-OTDR with a multi-frequency source. Journal of Lightwave Technology, 2013, 31(17): 2947-2954.

[33]

Redding B, Popoff S M, Cao H. All-fiber spectrometer based on speckle pattern reconstruction. Optics Express, 2013, 21(5): 6584-6600.

[34]

S. G. Hanson, M. L. Jakobsen, and M. Chakrabarti, “The dynamic speckle-based wavemeter,” in SPECKLE 2018: VII International Conference on Speckle Metrology, Poland, 2018, pp: 10834: 108342D.

[35]

ODonnell L, Dholakia K, Bruce G D. High speed determination of laser wavelength using Poincaré descriptors of speckle. Optics Communications, 2020, 459, 124906.

[36]

Dávila A, Rayas J. Single-shot phase detection in a speckle wavemeter for the measurement of femtometric wavelength change. Optics and Lasers in Engineering, 2020, 125, 105856.

[37]

Kwak Y, Park S M, Ku Z, Urbas A, Kim Y L. A pearl spectrometer. Nano Letters, 2021, 21(2): 921-930.

[38]

Monakhova K, Yanny K, Aggarwal N, Waller L. Spectral diffusercam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 2020, 7(10): 1298-1307.

[39]

Huang E, Ma Q, Liu Z. Etalon array reconstructive spectrometry. Scientific Reports, 2017, 7(1): 1-6.

[40]

Bao J, Bawendi M G. A colloidal quantum dot spectrometer. Nature, 2015, 523(7558): 67-70.

[41]

Yang Z, Albrow-Owen T, Cui H, Alexander-Webber J, Gu F, Wang X, . Single-nanowire spectrometers. Science, 2019, 365(6457): 1017-1020.

[42]

Gan X, Pervez N, Kymissis I, Hatami F, Englund D. A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array. Applied Physics Letters, 2012, 100(23): 231104.

[43]

Wang Z, Yi S, Chen A, Zhou M, Luk T S, James A, . Single-shot on-chip spectral sensors based on photonic crystal slabs. Nature Communications, 2019, 10(1): 1-6.

[44]

Kim C, Lee W-B, Lee S K, Lee Y T, Lee H-N. Fabrication of 2D thin-film filter-array for compressive sensing spectroscopy. Optics and Lasers in Engineering, 2019, 115, 53-58.

[45]

Kohlgraf-Owens T W, Dogariu A. Transmission matrices of random media: means for spectral polarimetric measurements. Optics Letters, 2010, 35(13): 2236-2238.

[46]

Redding B, Popoff S M, Bromberg Y, Choma M A, Cao H. Noise analysis of spectrometers based on speckle pattern reconstruction. Applied Optics, 2014, 53(3): 410-417.

[47]

Redding B, Alam M, Seifert M, Cao H. High-resolution and broadband all-fiber spectrometers. Optica, 2014, 1(3): 175-180.

[48]

Wang T, Li Y, Meng Y, Qiu Y, Mao B. Study of a fiber spectrometer based on offset fusion. Applied Optics, 2020, 59(15): 4697-4702.

[49]

Wang T, Li Y, Xu B, Mao B, Qiu Y, Meng Y. High-resolution wavemeter based on polarization modulation of fiber speckles. APL Photonics, 2020, 5(12): 126101.

[50]

Bruce G D, ODonnell L, Chen M, Dholakia K. Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution. Optics Letters, 2019, 44(6): 1367-1370.

[51]

Bruce G D, ODonnell L, Chen M, Facchin M, Dholakia K. Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter. Optics Letters, 2020, 45(7): 1926-1929.

[52]

Gupta R K, Bruce G D, Powis S J, Dholakia K. Deep learning enabled laser speckle wavemeter with a high dynamic range. Laser & Photonics Reviews, 2020, 14(9): 2000120.

[53]

Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth. Scientific Reports, 2017, 7, 43454.

[54]

Yi D, Zhang Y, Wu X, Tsang H K. Integrated multimode waveguide with photonic lantern for speckle spectroscopy. IEEE Journal of Quantum Electronics, 2020, 57(1): 1-8.

[55]

Redding B, Liew S F, Bromberg Y, Sarma R, Cao H. Evanescently coupled multimode spiral spectrometer. Optica, 2016, 3(9): 956-962.

[56]

Liew S F, Redding B, Choma M A, Tagare H D, Cao H. Broadband multimode fiber spectrometer. Optics Letters, 2016, 41(9): 2029-2032.

[57]

Meng Z, Li J, Yin C, Zhang T, Yu Z, Tang M, . Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing. AIP Advances, 2019, 9(1): 015004.

[58]

Varytis P, Huynh D-N, Hartmann W, Pernice W, Busch K. Design study of random spectrometers for applications at optical frequencies. Optics Letters, 2018, 43(13): 3180-3183.

[59]

Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, . Waveguide-integrated broadband spectrometer based on tailored disorder. Advanced Optical Materials, 2020, 8(6): 1901602.

[60]

Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, . Broadband spectrometer with single-photon sensitivity exploiting tailored disorder. Nano Letters, 2020, 20(4): 2625-2631.

[61]

Young A T. Rayleigh scattering. Applied Optics, 1981, 20(4): 533-535.

[62]

Nakazawa M. Rayleigh backscattering theory for single-mode optical fibers. Journal of the Optical Society of America, 1983, 73(9): 1175-1180.

[63]

Palmieri L, Schenato L. Distributed optical fiber sensing based on Rayleigh scattering. The Open Optics Journal, 2013, 7(1): 104-127.

[64]

Koshikiya Y, Fan X, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser. Journal of Lightwave Technology, 2008, 26(18): 3287-3294.

[65]

Mermelstein M D, Posey R, Johnson G A, Vohra S T. Rayleigh scattering optical frequency correlation in a single-mode optical fiber. Optics Letters, 2001, 26(2): 58-60.

[66]

Chen D, Liu Q, He Z. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR. Optics Express, 2017, 25(7): 8315-8325.

[67]

Wan Y, Wang S, Fan X, Zhang Z, He Z. High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry. Optics Letters, 2020, 45(4): 799-802.

[68]

S. Wang, Z. Zhang, X. Fan, B. Wang, and Z. He, “Calibration-free wavelength measurement with sub-femtometer resolution based on all-fiber Rayleigh speckles,” in 2019 Conference on Lasers and Electro-Optics (CLEO), USA, May 5–10, 2019, pp: 1–2.

[69]

Zhang Z, Fan X, Wang S, Zhao S, Wang B, Wan Y, . A novel wavemeter with 64 attometer spectral resolution based on Rayleigh speckle obtained from single-mode fiber. Journal of Lightwave Technology, 2020, 38(16): 4548-4554.

[70]

Wan Y, Fan X, Wang S, Zhang Z, Zhao S, He Z. Wavemeter capable of simultaneously achieving ultra-high resolution and broad bandwidth by using Rayleigh speckle from single mode fiber. Journal of Lightwave Technology, 2020, 39(7): 2223-2229.

[71]

Coluccelli N, Cassinerio M, Redding B, Cao H, Laporta P, Galzerano G. The optical frequency comb fibre spectrometer. Nature Communications, 2016, 7(1): 1-11.

[72]

Ye J, Cundiff S T. Femtosecond optical frequency comb: principle, operation and applications, 2005, Berlin: Springer Science & Business Media

[73]

French R, Gigan S, Muskens O L. Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats. Optics Letters, 2017, 42(9): 1820-1823.

[74]

Teng C C, Xiong C, Zhang E J, Green W M, Wysocki G. Adaptive thermal stabilization of an integrated photonic spectrometer using parasitic interference fringes. Optics Letters, 2020, 45(12): 3252-3255.

[75]

Liu T, Fiore A. Designing open channels in random scattering media for on-chip spectrometers. Optica, 2020, 7(8): 934-939.

[76]

Loranger S, Gagné M, Lambin-Iezzi V, Kashyap R. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre. Scientific Reports, 2015, 5, 11177.

[77]

Wu M, Fan X, Liu Q, He Z. Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array. Optics Letters, 2018, 43(15): 3594-3597.

AI Summary AI Mindmap
PDF

480

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/