A Miniature Fiber Tip Polystyrene Microsphere Temperature Sensor With High Sensitivity

Haibin Chen , Tianchong Xie , Jiashuang Feng , Xiongxing Zhang , Wei Wang , Yanping Li , Zilong Guo

Photonic Sensors ›› 2021, Vol. 12 ›› Issue (1) : 84 -90.

PDF
Photonic Sensors ›› 2021, Vol. 12 ›› Issue (1) : 84 -90. DOI: 10.1007/s13320-021-0625-6
Article

A Miniature Fiber Tip Polystyrene Microsphere Temperature Sensor With High Sensitivity

Author information +
History +
PDF

Abstract

A fiber-optic temperature sensor based on fiber tip polystyrene microsphere is proposed. The sensor structure can be formed simply by placing and fixing a polystyrene microsphere on the center of an optical fiber tip. Since polystyrene has a much larger thermal expansivity, the structure can be used for high-sensitive temperature measurement. By the illuminating of the sensor with a broadband light source and through the optical Fabry-Perot interference between the front and back surfaces of the polystyrene microsphere, the optical phase difference (OPD) or wavelength shift can be used for the extraction of temperature. Temperature measurement experiment shows that, using a fiber probe polystyrene microsphere temperature sensor with a spherical diameter of about 91.7 µm, a high OPD-temperature sensitivity of about −0.617 96 nm/°C and a good linearity of 0.991 6 were achieved in a temperature range of 20°C–70°C.

Keywords

Polystyrene microsphere / fiber-optic sensor / Fabry-Perot interference / temperature measurement

Cite this article

Download citation ▾
Haibin Chen, Tianchong Xie, Jiashuang Feng, Xiongxing Zhang, Wei Wang, Yanping Li, Zilong Guo. A Miniature Fiber Tip Polystyrene Microsphere Temperature Sensor With High Sensitivity. Photonic Sensors, 2021, 12(1): 84-90 DOI:10.1007/s13320-021-0625-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim K S, Yoo J W, Kim S K, Kim B Y. Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system. SPIE, 1996, 2718, 218-231.

[2]

Qi B, Pickrell G R, Zhang P, Duan Y, Peng W, Xu J C, . Fiber optic pressure and temperature sensors for oil down hole application. Fiber Optic Sensor Technology & Applications. International Society for Optics and Photonics, 2002, 4578, 182-190.

[3]

Murphy K A, Gunther M F, Vengsarkar A M, Claus R O. Fabry-Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft. Applied Optics, 1992, 31(4): 431-433.

[4]

Minas G, Ribeiro J C, Martins J S, Wolffenbuttel R F, Correia J H. An array of Fabry-Perot optical-channels for biological fluids analysis. Sensors & Actuators A Physical, 2004, 115(2–3): 362-367.

[5]

Jedrzejewska-Szczerska M. Response of a new low-coherence Fabry-Perot sensor to Hematocrit levels in human blood. Sensors, 2014, 14(4): 6965-6976.

[6]

Ma J, Jin W, Ho H L, Dai J Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Optics Letters, 2012, 37(13): 2493-2495.

[7]

Donlagic D, Cibula E. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm. Optics Letters, 2005, 30(16): 2071-2073.

[8]

Guo F, Fink T, Han M, Koester L, Turner J, Huang J. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Optics Letters, 2012, 37(9): 1505-1507.

[9]

Zhang Z, Liao C, Tang J, Bai Z, Guo K, Hou M, . High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Pérot interferometer. Journal of Lightwave Technology, 2017, 35(18): 4067-4071.

[10]

Qi X, Wang S, Jiang J, Liu K, Wang X, Yang Y, . Fiber optic Fabry-Perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection. Journal of Lightwave Technology, 2019, 37(11): 2719-2725.

[11]

Li M, Wang M, Li H. Optical MEMS pressure sensor based on Fabry-Perot interferometry. Optics Express, 2006, 14(4): 1497-1504.

[12]

Zhang Y, Yuan L, Lan X, Kaur A, Huang J, Xiao H. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser. Optics Letters, 2013, 38(22): 4609-4612.

[13]

Liu J, Yuan L, Lei J, Zhu W, Cheng B, Zhang Q, . Micro-cantilever-based fiber optic hydrophone fabricated by a femtosecond laser. Optics Letters, 2017, 42(13): 2459-2462.

[14]

Liao C, Liu S, Xu L, Wang C, Wang Y, Li Z, . Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement. Optics Letters, 2014, 39(10): 2827-2830.

[15]

Ma J, Ju J, Jin L, Jin W. A compact fiber-yip micro-cavity sensor for high-pressure measurement. IEEE Photonics Technology Letters, 2011, 23(21): 1561-1563.

[16]

J. Ma, W. Jin, and L. Jin, “A novel fiber-tip micro-cavity sensor for high temperature application,” in 21st International Conference on Optical Fiber Sensors, Ottawa, 2011, 7753: 775312.

[17]

Chen W, Wang D, Xu B, Wang Z, Zhao C. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber. Optical Engineering, 2017, 56(5): 057107.

[18]

Jiang X, Chen D, Shao J, Feng G, Yang J. Low-cost fiber-tip Fabry-Perot interferometer and its application for high temperature sensing. Chinese Optics Letters, 2014, 12(s1): S10609.

[19]

Tan X, Li X, Geng Y, Yin Z, Wang L, Wang W, . Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications. IEEE Photonics Technology Letters, 2015, 27(19): 2035-2038.

[20]

Duan D, Rao Y, Hou Y S, Zhu T. Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement. Applied Optics, 2012, 51(8): 1033-1036.

[21]

Song J, Winnik M. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules, 2005, 38(20): 8300-8307.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/