Zinc Phthalocyanine Thin Film-Based Optical Waveguide H2S Gas Sensor

Kediliya Wumaier , Gulgina Mamtmin , Qingrong Ma , Asiya Maimaiti , Patima Nizamidin , Abliz Yimit

Photonic Sensors ›› 2021, Vol. 12 ›› Issue (1) : 74 -83.

PDF
Photonic Sensors ›› 2021, Vol. 12 ›› Issue (1) : 74 -83. DOI: 10.1007/s13320-021-0623-8
Regular

Zinc Phthalocyanine Thin Film-Based Optical Waveguide H2S Gas Sensor

Author information +
History +
PDF

Abstract

The detection of hydrogen sulfide (H2S) is essential because of its toxicity and abundance in the environment. Hence, there is an urgent requisite to develop a highly sensitive and economical H2S detection system. Herein, a zinc phthalocyanine (ZnPc) thin film-based K+-exchanged optical waveguide (OWG) gas sensor was developed for H2S detection by using spin coating. The sensor showed excellent H2S sensing performance at room temperature with a wide linear range (0.1 ppm–500 ppm), reproducibility, stability, and a low detection limit of 0.1 ppm. The developed sensor showed a significant prospect in the development of cost-effective and highly sensitive H2S gas sensors.

Keywords

Zinc phthalocyanine thin film / optical waveguide / H2S detection / protonation

Cite this article

Download citation ▾
Kediliya Wumaier, Gulgina Mamtmin, Qingrong Ma, Asiya Maimaiti, Patima Nizamidin, Abliz Yimit. Zinc Phthalocyanine Thin Film-Based Optical Waveguide H2S Gas Sensor. Photonic Sensors, 2021, 12(1): 74-83 DOI:10.1007/s13320-021-0623-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali F I M, Awwad F, Greish Y E, Mahnoud S T. Hydrogen sulfide (H2S) gas sensor: a review. IEEE Sensors Journal, 2018, 19(7): 2394-2407.

[2]

Hao X D, Ma C, Yang X, Liu T, Wang B, Liu F M, . YSZ-based mixed potential H2S sensor using La2NiO4 sensing electrode. Sensors and Actuators B: Chemical, 2018, 255, 3033-3039.

[3]

Balasubramani V, Sureshkumar S, Rao T, Sridhar T M. Impedance spectroscopy-based reduced graphene oxide-incorporated ZnO composite sensor for H2S investigations. ACS Omega, 2019, 4(6): 9976-9982.

[4]

Kitture R, Pawar D, Rao C N, Choubey R K, Kale S N. Nanocomposite modified optical fiber: a room temperature, selective H2S gas sensor: studies using ZnO-PMMA. Journal of Alloys and Compounds, 2017, 695, 2091-2096.

[5]

Sarfraz J, Ihalainen P, Maattanen A, Gulin T, Koskela J, Wilen C E, . A printed H2S sensor with electro-optical response. Sensors and Actuators B: Chemical, 2014, 191, 821-827.

[6]

Nie Y X, Deng P, Zhao Y Y, Wang P L, Xing L L, Zhang Y, . The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor. Nanotechnology, 2014, 25(26): 265501.

[7]

Zhang J T, Zhu Z J, Chen C M, Chen Z, Cai M Q, Qu B H, . ZnO-carbon nanofibers for stable, high response, and selective H2S sensors. Nanotechnology, 2018, 29(27): 275501.

[8]

He M, Xie L L, Zhao X L, Hu X B, Li S H, Zhu A G. Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature. Journal of Alloys and Compounds, 2019, 788, 36-43.

[9]

Maimaiti A, Abdurahman R, Kari N, Ma Q R, Wumaier K, Nizamidin P, . Highly sensitive optical waveguide sensor for SO2 and H2S detection in the parts-per-trillion regime using tetraaminophenyl porphyrin. Journal of Modern Optics, 2020, 67(6): 1-8.

[10]

Tuerdi G, Kari N, Yan Y, Nizamidin P, Yimit A. A functionalized tetrakis(4-Nitrophenyl)porphyrin film optical waveguide sensor for detection of H2S and ethanediamine gases. Sensors, 2017, 17(12): 2717.

[11]

Huang Y W, Kalyoncu S K, Zhao Q, Torun R, Boyraz O. Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors. Optics Communications, 2014, 313, 186-194.

[12]

N. L. Kazanskiy, S. N. Khonina, and A. Butt, “Polarization-insensitive hybrid plasmonic waveguide design for evanescent field absorption gas sensor,” Photonic Sensors, 2020, DOI: https://doi.org/10.1007/s13320-020-0601-6.

[13]

Khonina S N, Kazanskiy N L, Butt A. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sensors Journal, 2020, 20(15): 8469-8476.

[14]

Ranacher C, Consan C, Vollert N, Tortschanoff A, Bergmeister M, Grille T, . Characterization of evanescent field gas sensor structures based on silicon photonics. IEEE Photonics Journal, 2018, 10(5): 1-14.

[15]

Mironenko A Y, Sergeev A A, Nazirov A E, Modin E B, Voznesenskiy S S, Bratskaya S Y. H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sensors and Actuators B: Chemical, 2016, 225, 348-353.

[16]

Yin Y, Nizamidin P, Turdi G, Kari N, Yimit A. Room-temperature H2S gas sensor based on au-doped ZnFe2O4 yolk-shell microspheres. Analytical ences the International Journal of the Japan Society for Analytical Chemistry, 2017, 33(8): 945-951.

[17]

Abdukayum A, Yimit A, Mahmut M, Itoh K. A planar optical waveguide sensor for hydrogen sulfide detection. Sensor Letters, 2007, 5(2): 395-397.

[18]

Ma Q R, Kutluk B, Kari N, Abliz S, Yimit A. Study on surface sensitization of g-C3N4 by functioned different aggregation behavior porphyrin and its optical properties. Materials Science in Semiconductor Processing, 2021, 121, 105316.

[19]

Olgac R, Soganci T, Baygu Y, Gok Y A, Ak M. Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: Synthesis, electropolymerization and its electro-optic and biosensor applications. Biosensors and Bioelectronics, 2017, 98, 202-209.

[20]

Khoza P, Ndhundhuma I, Karsten A, Nyokong T. Photodynamic therapy activity of phthalocyanine-silver nanoparticles on melanoma cancer cell. Journal of Nanoscience and Nanotechnology, 2020, 20(5): 3097-3104.

[21]

Sen P, Managa M, Nyokong T. New type of metal-free and Zinc(II), In(III), Ga(III) phthalocyanines carrying biologically active substituents: synthesis and photophysicochemical properties and photodynamic therapy activity. Inorganica Chimica Acta, 2019, 491, 1-8.

[22]

Chen F, Li K, Hu G. Catalytic oxygen reduction property of carbon nanotubes supported tetra-nitro-metal phthalocyanines-MnO2 dual catalysts. Chinese Journal of Applied Chemistry, 2019, 36(1): 97-106.

[23]

Makinda Z O, Louzada M S, Britton J, Nyokong T, Khene S. Spectroscopic and nonlinear optical properties of alkyl thio substituted binuclear phthalocyanines. Dyes and Pigments, 2019, 162, 249-256.

[24]

Shi J W, Luan L Q, Fang W J, Zhao T Y, Liu W, Cui D L. High-sensitive low-temperature NO2 sensor based on Zn (II) phthalocyanine with liquid crystalline properties. Sensors and Actuators B: Chemical, 2014, 204, 218-223.

[25]

Liang X H, Chen Z M, Wu H, Guo L X, He C Y, Wang B, . Enhanced NH3-sensing behavior of 2,9,16,23-tetrakis (2,2,3,3-tetrafluoropropoxy) metal(II) phthalocyanine/multi-walled carbon nanotube hybrids: An investigation of the effects of central metals. Carbon, 2014, 80, 268-278.

[26]

Miyata T, Kawaguchi S, Ishii M, Minami T. High sensitivity chlorine gas sensors using Cu-phthalocyanine thin films. Thin Solid Films, 2003, 425(1–2): 255-259.

[27]

Senthilarasu S, Velumani S, Sathyamoothr R, Subbarayan A, Ascencio J A, Ganizal G, . Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Applied Physics A, 2003, 77(3–4): 383-389.

[28]

Mthethwa T P, Tuncel S, Durmus M, Nyokong T. Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate. Dalton Transactions, 2013, 42(14): 4922-4930.

[29]

Song Z Q, Tang Q X, Ton Y H, Liu Y C. High-response identifiable gas sensor based on a gas-dielectric ZnPc nanobelt FET. IEEE Electron Device Letters, 2017, 38(11): 1586-1589.

[30]

Lei T P, Shi Y B, Lu W L, Yang L, Wei T, Yuan P L, . Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl16. Journal of Semiconductors, 2010, 31(8): 084010.

[31]

Nizamidin P, Yimit A, Nurulla I, Itoh K. Optical waveguide BTX gas sensor based on yttrium-doped lithium iron phosphate thin film. International Scholarly Research Notices, 2014, 2012(12): 1-6.

[32]

Ogunsipe A, Nyokong T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. Journal of Molecular Structure, 2004, 689(1–2): 89-97.

[33]

Ghanbari B, Shahhoseini L, Mahlooji N, Gholamnezhad P, Taheri R Z. Through-space electronic communication of zinc phthalocyanine with substituted [60]fullerene bearing O2Nxaza- crown macrocyclic ligands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 330-339.

[34]

Liu X J, Qi C, Bing T, Cheng X H, Shangguan D H. Highly selective phthalocyaninethymine conjugate sensor for Hg2+ based on target induced aggregation. Analytical Chemistry, 2009, 81(9): 3699-3704.

[35]

Yi J X, Chen Z H, Xiang J H, Zhang F S. Photocontrollable J-aggregation of a diarylethenephthalocyanine hybrid and its aggregation- stabilized photochromic behavior. Langmuir, 2011, 27(13): 8061-8066.

[36]

Wang J M, Nizamidin P, Zhang Y, Kari N, Yimit A. Detection of trimethylamine based on a manganese tetraphenylporphyrin optical waveguide sensing element. Analytical Sciences, 2018, 34(5): 559-565.

[37]

Ogunsipe A, Nyokong T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. Journal of Molecular Structure, 2004, 689(1–2): 89-97.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/