Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances

Ning An , Chenye Qin , Yiwei Li , Teng Tan , Zhongye Yuan , Hao Zhang , Yu Wu , Baicheng Yao , Yunjiang Rao

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (1) : 123 -139.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (1) : 123 -139. DOI: 10.1007/s13320-021-0617-6
Review

Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances

Author information +
History +
PDF

Abstract

Single atomically thick graphene, with unique structural flexibility, surface sensitivity, and effective light-mater interaction, has shown exceptional advances in optoelectronics. It opens a door for diverse functionalized photonic devices, ranging from passive polarizers to active lasers and parametric oscillators. Among them, graphene-fiber biochemical sensors combine the merits of both graphene and fiber structures, demonstrating impressively high performances, such as single-molecule detectability and fast responsibility. These graphene-fiber biochemical sensors can offer tools in various applications, such as gas tracing, chemical analysis, and medical testing. In this paper, we review the emerging graphene-fiber biochemical sensors comprehensively, including the sensing principles, device fabrications, systematic implementations, and advanced applications. Finally, we summarize the state-of-the-art graphene-fiber biochemical sensors and put forward our outlooks on the development in the future.

Keywords

Graphene / fiber sensors / biochemical sensing

Cite this article

Download citation ▾
Ning An, Chenye Qin, Yiwei Li, Teng Tan, Zhongye Yuan, Hao Zhang, Yu Wu, Baicheng Yao, Yunjiang Rao. Graphene-Fiber Biochemical Sensors: Principles, Implementations, and Advances. Photonic Sensors, 2020, 11(1): 123-139 DOI:10.1007/s13320-021-0617-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yao B, Wu Y, Wang Z, Cheng Y, Rao Y, Gong Y, . Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer. Optics Express, 2013, 21(24): 29818-29826.

[2]

Semwal V, Gupta B D. Highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing rGO-Pani nanocomposite prepared by in situ method. Sensors and Actuators B: Chemical, 2019, 283, 632-642.

[3]

Ting H, Kin S C. Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 2017, 29(23): 2035-2038.

[4]

Xu W, Yang T, Qin F, Gong D, Du Y, Dai G. A sprayed graphene pattern-based flexible strain sensor with high sensitivity and fast response. Sensors (Switzerland), 2019, 19(5): 1-11.

[5]

Cao Z, Yao B, Qin C, Yang R, Guo Y, Zhang Y, . Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light: Science & Applications, 2019, 8(1): 4-13.

[6]

Kim J A, Hwang T, Dugasani S R, Amin R, Kulkarni A, Park S H, . Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sensors and Actuators B: Chemical, 2013, 187, 426-433.

[7]

Shivananju B N, Yu W, Liu Y, Zhang Y, Lin B, . The roadmap of graphene-based optical biochemical sensors. Advanced Functional Materials, 2017, 27(19): 1-19.

[8]

Chen H, Li R, Xu F. Optical microfiber sensors: sensing mechanisms, and recent advances. Journal of Lightwave Technology, 2019, 37(11): 2577-2589.

[9]

Tong L. Micro/nanofibre optical sensors: challenges and prospects. Sensors (Switzerland), 2018, 18(3): 903.

[10]

Choi W, Lahiri I, Seelaboyina R, Kang Y S. Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences, 2010, 35(1): 52-71.

[11]

Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530-1534.

[12]

Allen M J, Tung V C, Kane R B. Honeycomb carbon: a review of graphene. Chemical Reviews, 2010, 110(1): 132-145.

[13]

Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611-622.

[14]

Young R J, Kinloch I A, Gong L, Novoselov K S. The mechanics of graphene nanocomposites: a review. Composites Science and Technology, 2012, 72(12): 1459-1476.

[15]

Chang H, Wu H. Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 2013, 23(16): 1984-1997.

[16]

Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, . Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955-959.

[17]

Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photonics, 2013, 7(11): 842-845.

[18]

Yao B, Liu Y, Huang S W, Choi C, Xie Z, Flores J F, . Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nature Photonics, 2018, 12(1): 22-28.

[19]

Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M. Optical third-harmonic generation in graphene. Physical Review X, 2013, 3(2): 021014.

[20]

Yao B, Yu C, Wu Y, Huang S W, Wu H, Gong Y, . Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Letters, 2017, 17(8): 4996-5002.

[21]

An N, Tan T, Peng Z, Qin C, Yuan Z, Bi L, . Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Letters, 2020, 20(9): 6473-6480.

[22]

Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109-162.

[23]

Mikhailov S A, Ziegler K. New electromagnetic mode in graphene. Physical Review letters, 2007, 99(1): 1-4.

[24]

Zheng P, Wu N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chemistry — An Asian Journal, 2017, 12(18): 2343-2353.

[25]

Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnology, 2007, 2(10): 605-615.

[26]

Wu Y, Yao B, Yu C, Rao Y. Optical graphene gas sensors based on microfibers: a review. Sensors (Switzerland), 2018, 18(4): 941.

[27]

Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, . Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210-215.

[28]

U. Sampath, D. Kim, and M. Song, “Hemoglobin detection using a graphene oxide functionalized side-polished fiber sensor,” in SPIE Optics + Optoelectronics, Prague, Apirl, 2019, pp. 82.

[29]

Lima S E U, Farias R G, Araújo F M, Ferreira L A, Santos J L, Miranda V, . Fiber laser sensor based on a phase-shifted chirped grating for acoustic sensing of partial discharges. Photonic Sensors, 2013, 3(1): 44-51.

[30]

Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics, 2012, 6(11): 749-758.

[31]

Wei W, Nong J, Zhu Y, Zhang G, Wang N, Luo S, . Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor. Plasmonics, 2018, 13(2): 483-491.

[32]

Yang X, Sun Z, Low T, Hu H, Guo X, de Abajo F J G, . Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 2018, 30(20): 1704896.

[33]

Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, . Fundamental limits to graphene plasmonics. Nature, 2018, 557(7706): 530-533.

[34]

Sekar R B, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. The Journal of Cell Biology, 2003, 160(5): 629-633.

[35]

Yao B, Wu Y, Yu C, He J, Rao Y, Gong Y, . Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection. Scientific Reports, 2016, 6, 23706.

[36]

Suvarnaphaet P, Pechprasarn S. Graphene-based materials for biosensors: a review. Sensors (Switzerland), 2017, 17(10): 2161.

[37]

Li X, Cai W, An J, Kim S, Nah J, Yang D, . Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312-1314.

[38]

Parviz D, Irin F, Shah S A, Das S, Sweeney C B, Green M J. Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene. Advanced Materials, 2016, 28(40): 8796-8818.

[39]

Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715.

[40]

Sharma V, Jain Y, Kumari M, Gupta R, Sharma S K, Sharma S K, . Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromolecular Symposia, 2017, 376(1): 1-5.

[41]

Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene. Chemical Vapor Deposition, 2013, 19, 297-322.

[42]

Perumbilavil S, Sankar P, Priya Rose T, Philip R. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Applied Physics Letters, 2015, 107(5): 051104.

[43]

Tan T, Jiang X, Wang C, Yao B, Zhang H. 2D material optoelectronics for information functional device applications: status and challenges. Advanced Science, 2020, 7(11): 2000058.

[44]

Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, . Graphene photonic crystal fibre with strong and tunable light-matter interaction. Nature Photonics, 2019, 13(11): 754-759.

[45]

Ma J, Jin W, Ho H L, Dai J Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Optics Letters, 2012, 37(13): 2493-2495.

[46]

Choi S Y, Cho D K, Song Y-W, Oh K, Kim K, . Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking. Optics Express, 2012, 20(5): 5652-5657.

[47]

Kou J, Chen J, Chen Y, Xu F, Lu Y. Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices. Optica, 2014, 1(5): 207-310.

[48]

Liu C, Xu B, Zhou L, Sun Z, Mao H, Zhao J, . Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection. Sensors and Actuators B: Chemical, 2018, 261, 91-96.

[49]

Gorji M, Sadeghianmaryan A, Rajabinejad H, Nasherolahkam S, Chen X. Development of highly pH-sensitive hybrid membranes by simultaneous electrospinning of amphiphilic nanofibers reinforced with graphene oxide. Journal of Functional Biomaterials, 2019, 10(2): 23.

[50]

Hossain M B, Islam M M, Abdulrazak L F, Rana M M, Akib T B A, Hassan M. Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis. Photonic Sensors, 2020, 10(1): 67-79.

[51]

A. Syuhada, M. S. Shamsudin, S. Daud, G. Krishnan, S. W. Harun, and M. S. Abd Aziz, “Single-mode modified tapered fiber structure functionalized with GO-PVA composite layer for relative humidity sensing,” Photonic Sensors, DOI: https://doi.org/10.1007/s13320-020-0595-0.

[52]

Zhang A, Wu Y, Yao B, Gong Y. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing. Photonic Sensors, 2015, 5(1): 84-90.

[53]

B. Yao, Y. Wu, Y. Chen, X. Liu, Y. Gong, and Y. Rao, “Graphene-based microfiber gas sensor,” in OFS2012 22nd International Conference on Optical Fiber Sensor, Beijing, 2012, pp. 8421CD-1-8421CD-4.

[54]

Yao B, Wu Y, Cheng Y, Zhang A, Gong Y, Rao Y J, . All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sensors and Actuators B: Chemical, 2014, 194, 142-148.

[55]

Yao B, Wu Y, Zhang A, Wang F, Rao Y, Gong Y, . Graphene Bragg gratings on microfiber. Optics Express, 2014, 22(20): 23829-23835.

[56]

Yao B, Wu Y, Zhang A, Rao Y, Wang Z, Cheng Y, . Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express, 2014, 22(23): 28154-28162.

[57]

Wu Y, Yao B, Zhang A, Cao X, Wang Z, Rao Y, . Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing. Optics Letters, 2014, 39(20): 6030-6033.

[58]

Feng X, Feng W, Tao C, Deng D, Qin X, Chen R. Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sensors and Actuators B: Chemical, 2017, 247, 540-545.

[59]

Pawar D, Rao B V B, Kale S N. Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer. Analyst, 2018, 143(8): 1890-1898.

[60]

Sridevi S, Vasu K S, Bhat N, Asokan S, Sood A K. Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings. Sensors and Actuators B: Chemical, 2016, 223, 481-486.

[61]

Zhang Y, Chen Y, Zhou K, Liu C, Zeng J, Zhang H, . Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 2009, 20(18): 185504.

[62]

Yu C, Wu Y, Liu X, Fu F, Gong Y, Rao Y J, . Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sensors and Actuators B: Chemical, 2017, 244, 107-113.

[63]

Wang Y, Shen C, Lou W, Shentu F. Fiber optic humidity sensor based on the graphene oxide/PVA composite film. Optics Communications, 2016, 372, 229-234.

[64]

Fu H, Jiang Y, Ding J, Zhang J, Zhang M, Zhu Y, . Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sensors and Actuators B: Chemical, 2018, 254, 239-247.

[65]

Zhang J, Fu H, Ding J, Zhang M, Zhu Y. Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor. Applied Optics, 2017, 56(31): 8828-8831.

[66]

Sridevi S, Vasu K S, Asokan S, Sood A K. Sensitive detection of C-reactive protein using optical fiber Bragg gratings. Biosensors and Bioelectronics, 2015, 65, 251-256.

[67]

Qiu H, Gao S, Chen P, Li Z, Liu X, Zhang C, . Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Optics Communications, 2016, 366, 275-281.

[68]

Semwal V, Gupta B D. LSPR- and SPR-based fiber-optic cholesterol sensor using immobilization of cholesterol oxidase over silver nanoparticles coated graphene oxide nanosheets. IEEE Sensors Journal, 2017, 18(3): 1039-1046.

[69]

Zhang P, Lu B, Sun Y, Yu H, Xu K, Li D. Side-polished flexible SPR sensor modified by graphene with in situ temperature self-compensation. Biomedical Optics Express, 2019, 10(1): 215-225.

[70]

Yu H, Chong Y, Zhang P, Ma J, Li D. A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta, 2020, 219, 121324.

[71]

Sharma A K, Gupta J. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood. Optical Fiber Technology, 2018, 41, 125-130.

[72]

Wang Q, Wang B. Sensitivity enhanced SPR immunosensor based on graphene oxide and SPA co-modified photonic crystal fiber. Optics & Laser Technology, 2018, 107, 210-215.

[73]

Wang Q, Wang B T. Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber. Sensors and Actuators B: Chemical, 2018, 275, 332-338.

[74]

Esposito F, Sansone L, Taddei C, Campopiano S, Giordano M, Iadicicco A. Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer. Sensors and Actuators B: Chemical, 2018, 274, 517-526.

[75]

Zhou J, Huang Y, Chen C, Xiao A, Guo T, Guan B O. Improved detection sensitivity of γ-aminobutyric acid based on graphene oxide interface on an optical microfiber. Physical Chemistry Chemical Physics, 2018, 20(20): 14117-14123.

[76]

Aziz A, Lim H N, Girei S H, Yaacob M H, Mahdi M A, Huang N M, . Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium. Sensors and Actuators B: Chemical, 2015, 206, 119-125.

[77]

Yao B, Wu Y, Webb D J, Zhou J, Rao Y, Pospori A, . Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection. IEEE Photonics Technology Letters, 2015, 27(22): 2399-2402.

[78]

Nayak J K, Parhi P, Jha R. Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor. Sensors and Actuators B: Chemical, 2015, 221, 835-841.

[79]

Hu W, Huang Y, Chen C, Liu Y, Guo T, Guan B O. Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification. Sensors and Actuators B: Chemical, 2018, 264, 440-447.

[80]

Yao B, Huang S W, Liu Y, Vinod A K, Choi C, Hoff M, . Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 2018, 558(7710): 410-414.

[81]

Chen H, Ji Q, Wang H, Yang Q, Cao Q, Gong Q, . Chaos-assisted two-octave-spanning microcombs. Nature Communications, 2020, 11(1): 1-6.

[82]

Zhang J, Peng B, Özdemir K, Pichler K, Krimer D O, Zhao G, . A phonon laser operating at an exceptional point. Nature Photonics, 2018, 12(8): 479-484.

[83]

Chen W, Özdemir Ş K K, Zhao G, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192-196.

[84]

Rodrigo D, Limaj O, Janner D, Etezadi D, Garcia De Abajo F J, Pruneri V, . Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349(6244): 165-168.

[85]

H. Wu, Z. Wang, F. Peng, Z. Peng, X. Li, Y. Wu, et al., “Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline,” in OFS2014 23rd International Conference on Optical Fiber Sensors, Spain, June 2, 2014, pp. 915790.

[86]

Z. Wang, J. Zeng, J. Li, F. Peng, L. Zhang, Y. Zhou, et al., “175 km phase-sensitive OTDR with hybrid distributed amplification,” in OFS2014 23rd International Conference on Optical Fiber Sensors, Spain, June 2, 2014, pp. 9157D5.

[87]

Wu H, Qian Y, Zhang W, Tang C. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring. Photonic Sensors, 2017, 7(4): 305-310.

[88]

Tan T, Peng C, Yuan Z, Xie X, Liu H, Xie Z, . Predicting Kerr soliton combs in microresonators via deep neural networks. Journal of Lightwave Technology, 2020, 38(23): 6591-6599.

[89]

Gao R, Lu D F, Cheng J, Jiang Y, Jiang L, Qi Z. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sensors and Actuators B: Chemical, 2016, 222, 618-624.

[90]

Xiao Y, Yu J, Shun L, Tan S, Cai X, Luo Y, . Reduced graphene oxide for fiber-optic toluene gas sensing. Optics Express, 2016, 24(25): 28290-28302.

[91]

Zhang N M Y, Li K, Shum P P, Yu X, Zeng S, Wu Z, . Hybrid graphene/gold plasmonic fiber-optic biosensor. Advanced Materials Technologies, 2017, 2(2): 1600185.

AI Summary AI Mindmap
PDF

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/