Simultaneous Strain and Temperature Measurement Based on Chaotic Brillouin Optical Correlation-Domain Analysis in Large-Effective-Area Fibers

Xiaocheng Zhang , Shuangshuang Liu , Jianzhong Zhang , Lijun Qiao , Tao Wang , Shaohua Gao , Mingjiang Zhang

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (4) : 377 -386.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (4) : 377 -386. DOI: 10.1007/s13320-020-0609-y
Regular

Simultaneous Strain and Temperature Measurement Based on Chaotic Brillouin Optical Correlation-Domain Analysis in Large-Effective-Area Fibers

Author information +
History +
PDF

Abstract

Chaotic Brillouin optical correlation domain analysis (BOCDA) has been proposed and experimentally demonstrated with the advantage of high spatial resolution. However, it faces the same issue of the temperature and strain cross-sensitivity. In this paper, the simultaneous measurement of temperature and strain can be preliminarily achieved by analyzing the two Brillouin frequencies of the chaotic laser in a large-effective-area fiber (LEAF). A temperature resolution of 1 °C and a strain resolution of 20 µε can be obtained with a spatial resolution of 3.9 cm. The actual temperature and strain measurement errors are 0.37 °C and 10 µε, respectively, which are within the maximum measurement errors.

Keywords

Brillouin scattering / simultaneous strain and temperature measurement / chaotic laser / BOCDA / LEAF

Cite this article

Download citation ▾
Xiaocheng Zhang, Shuangshuang Liu, Jianzhong Zhang, Lijun Qiao, Tao Wang, Shaohua Gao, Mingjiang Zhang. Simultaneous Strain and Temperature Measurement Based on Chaotic Brillouin Optical Correlation-Domain Analysis in Large-Effective-Area Fibers. Photonic Sensors, 2020, 11(4): 377-386 DOI:10.1007/s13320-020-0609-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yoon H J, Song K Y, Choi C Y, Na H S, Kim J S. Real-time distributed strain monitoring of a railway bridge during train passage by using a distributed optical fiber sensor based on Brillouin optical correlation domain analysis. Journal of Sensors, 2016, 2016, 9137531.

[2]

Mizuno Y, Zou W W, He Z Y, Hotate K. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Optics Express, 2008, 16(16): 12148-12153.

[3]

Mizuno Y, Lee H, Nakamura K. Recent advances in Brillouin optical correlation-domain reflectometry. Applied Sciences, 2018, 8(10): 1845.

[4]

Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation. IEICE Transactions on Electron, 2000, 83(3): 405-412.

[5]

Mizuno Y, He Z Y, Hotate K. Measurement range enlargement in Brillouin optical correlation domain reflectometry based on temporal gating scheme. Optics Express, 2009, 17(11): 9040-9046.

[6]

Jeong J H, Lee K, Song K Y, Jeong J M, Lee S B. Differential measurement scheme for Brillouin optical correlation domain analysis. Optics Express, 2012, 20(24): 27094-27101.

[7]

Zadok A, Antman Y, Primerov N, Denisov A, Sancho J, Thevenaz L. Random-access distributed fiber sensing. Laser & Photonics Reviews, 2012, 6(5): 1-5.

[8]

Denisov A, Soto M A, Thevenaz L. Going beyond 1 000 000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light: Science & Applications, 2016, 5, e16074.

[9]

London Y, Antman Y, Preter E, Levanon N, Zadok A. Brillouin optical correlation domain analysis addressing 440 000 resolution points. Journal of Lightwave Technology, 2016, 34(19): 4421-4429.

[10]

Shlomi O, Preter E, Ba D, London Y, Antman Y, Zadok A. Double-pulse pair Brillouin optical correlation-domain analysis. Optics Express, 2016, 24(23): 26867-26876.

[11]

Matsumoto M, Akai S. High-spatial-resolution Brillouin optical correlation domain analysis using short-pulse optical sources. Journal of Lightwave Technology, 2019, 37(24): 6007-6014.

[12]

Ba D X, Li Y, Yan J L, Zhang X P, Dong Y K. Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying. Optics Express, 2019, 27(25): 36197.

[13]

Elooz D, Antman Y, Levanon N, Zadok A. High resolution long reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Optics Express, 2014, 22(6): 6454-6463.

[14]

Cohen R, London Y, Antman Y, Zadok A. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission. Optics Express, 2014, 22(10): 12070-12078.

[15]

Li M W, Zhang X C, Zhang J Z, Zhang J G, Zhang M J, Qiao L J, . True random coding for Brillouin optical correlation domain analysis. OSA Continuum, 2019, 2(7): 2234-2243.

[16]

Zhang J Z, Zhang M T, Zhang M J, Liu Y, Feng C K, Wang Y H, . Chaotic Brillouin optical correlation-domain analysis. Optics Letters, 2018, 43(8): 1722-1725.

[17]

Zhang J Z, Feng C K, Zhang M J, Liu Y, Wu C Y, Wang Y H. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature. Optics Express, 2018, 26(6): 6962-6972.

[18]

Zhang J Z, Wang Y H, Zhang M J, Zhang Q, Li M W, Wu C Y, . Time-gated chaotic Brillouin optical correlation domain analysis. Optics Express, 2018, 26(13): 17597-17607.

[19]

Wang Y H, Zhao L, Zhang M J, Zhang J Z, Qiao L J, Wang T, . Dynamic strain measurement by a single-slope-assisted chaotic Brillouin optical correlation-domain analysis. Optics Letters, 2020, 45(7): 1822-1825.

[20]

Zou W, He Z Y, Hotate K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Optics Express, 2009, 17(3): 1248-1255.

[21]

Zou W, He Z Y, Hotate K. Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber. IEEE Photonics Technology Letters, 2010, 22(8): 526-528.

[22]

Liu X, Bao X Y. Brillouin spectrum in LEAF and simultaneous temperature and strain measurement. Journal of Lightwave Technology, 2012, 30(8): 1053-1059.

[23]

Zou W, He Z Y, Kishi M, Hotate K. Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding. Optics Letters, 2007, 32(6): 600-602.

[24]

Cohen R, London Y, Antman Y, Zadok A. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission. Optics Express, 2014, 22(10): 12070-12078.

[25]

J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in 12th International Conference on Optical Fiber Sensors, America, October 28, 1997, pp: 36–39.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/