Refractive Index Sensor Based on Metal-Clad Planar Polymer Waveguide Operating at 850 nm

Lanting Ji , Wei Wei , Gang Li , Shuqing Yang , Yujie Fu , Juan Su , Chi Wu

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (4) : 448 -456.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (4) : 448 -456. DOI: 10.1007/s13320-020-0606-1
Regular

Refractive Index Sensor Based on Metal-Clad Planar Polymer Waveguide Operating at 850 nm

Author information +
History +
PDF

Abstract

A metal-clad planar polymer waveguide refractive index sensor based on epoxy (EPO) polymer materials by using light intensity interrogation at 850 nm is designed. The polymethyl methacrylate (PMMA) material is deployed as the low refractive index (RI) buffer layer in order to better couple the optical guided mode and the surface plasmon polaritons (SPP) mode for working in water environment. The effects of the gold film thickness, PMMA buffer layer thickness, waveguide layer thickness, waveguide width, and gold length on the sensor sensing characteristics have been comprehensively studied. Simulation results demonstrate that the normalized transmission increases quasi-linearly with the increment of RI of the analyte from 1.33 to 1.46. The sensitivity is 491.5 dB/RIU, corresponding to a high RI resolution of 2.6×10−9 RIU. The designed SPP-based optical waveguide sensor is low-cost, wide-range, and high-precision, and has a broad application prospect in biochemical sensing with merits of miniaturization, flexibility, and multiplexing.

Keywords

Metal-clad optical waveguide sensor / intensity interrogation / refractive index of liquid

Cite this article

Download citation ▾
Lanting Ji, Wei Wei, Gang Li, Shuqing Yang, Yujie Fu, Juan Su, Chi Wu. Refractive Index Sensor Based on Metal-Clad Planar Polymer Waveguide Operating at 850 nm. Photonic Sensors, 2020, 11(4): 448-456 DOI:10.1007/s13320-020-0606-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830.

[2]

Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, . Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photonics, 2010, 4(2): 107-111.

[3]

Brahmachari K, Ghosh S, Ray M. Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method. Photonic Sensors, 2013, 3(2): 159-167.

[4]

Xue M, Jiang Q, Zhang C, Lin J. A kind of biomolecular probe sensor based on TFBG surface plasma resonance. Photonic Sensors, 2015, 5(2): 102-108.

[5]

Wang L, Ren K, Sun B, Chen K. Highly sensitive refractive index sensor based on polymer long-period waveguide grating with liquid cladding. Photonic Sensors, 2019, 9(1): 19-24.

[6]

Jiang Q, Xue M, Liang P, Zhang C, Lin J, Ouyang J. Principle and experiment of protein detection based on optical fiber sensing. Photonic Sensors, 2017, 7(4): 317-324.

[7]

Çimen D, Denizli A. Development of rapid, sensitive and effective plasmonic nanosensor for the detection of vitamins in infact formula and milk samples. Photonic Sensors, 2020, 10(4): 316-332.

[8]

Verma R K, Sharma A K, Gupta B D. Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Optics Communications, 2008, 281(6): 1486-1491.

[9]

Yuan Y, Yuan N, Gong D, Yang M H. A high-sensitivity and broad-range SPR glucose sensor based on improved glucose sensitive membranes. Photonic Sensors, 2019, 9(4): 309-316.

[10]

Michel D, Xiao F, Alameh K. A compact, flexible fiber-optic Surface Plasmon Resonance sensor with changeable sensor chips. Sensors and Actuators B: Chemical, 2017, 246, 258-261.

[11]

Mishra S K, Zou B, Chiang K S. Surface-plasmon-resonance refractive-index sensor with Cu-coated polymer waveguide. IEEE Photonics Technology Letters, 2016, 28(17): 1835-1838.

[12]

Dostálek J, Čtyrokß J, Homola J, Brynda E, Skalskß M, Nekvindová P. Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors and Actuators B: Chemical, 2001, 76(1–3): 8-12.

[13]

Ji L, Sun X, He G, Yu L, Wang X, Yi Y, . Surface plasmon resonance refractive index sensor based on ultraviolet bleached polymer waveguide. Sensors and Actuators B: Chemical, 2017, 244, 373-379.

[14]

Ahn J H, Seong T Y, Kim W M, Lee T S, Kim I L, Kyeong S. Fiber-optic waveguide coupled surface plasmon resonance sensor. Optics Express, 2012, 20(19): 21729-21738.

[15]

Fan B, Fang L, Li Y, Wang X, Cui K, Xue F, . Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide. Sensors and Actuators B: Chemical, 2003, 186, 495-505.

[16]

Wong W R, Krupin O, Mahamd Adikan F R, Berini P. Optimization of long-range surface plasmon waveguides for attenuation-based biosensing. Journal of Lightwave Technology, 2015, 33(15): 3234-3242.

[17]

Homola J, Čtyroký J, Skalský M, Hradilová J, Kolářová P. A surface plasmon resonance based integrated optical sensor. Sensors and Actuators B: Chemical, 1997, 39(1–3): 286-290.

[18]

Harris R D, Wilkinson J S. Waveguide surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 1995, 29(1–3): 261-267.

[19]

Ji L, Yang S, Shi R, Fu Y, Su J, Wu C. Polymer waveguide coupled surface plasmon refractive index sensor: a theoretical study. Photonic Sensors, 2020, 10(4): 353-363.

[20]

Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B, 1972, 6(12): 4370-4379.

[21]

Krupin O, Asiri H, Wang C, Tait R N, Berini P. Biosensing using long-range surface plasmon-polariton waveguides. Optics Express, 2013, 21(1): 698-709.

[22]

Kedenburg S, Vieweg M, Gissibl T, Giessen H. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Optical Materials Express, 2012, 2(11): 1588-1611.

[23]

Xu Y, Wang F, Gao Y, Zhang D, Sun X, Berini P. Straight long-range surface plasmon polariton waveguide sensor operating at λ0 = 850 nm. Sensors, 2020, 20(9): 2507.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/