Study of Temporal Thermal Response of Microfiber Bragg Grating

Changrui Liao , Tianhang Yang , Jinli Han

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (4) : 387 -391.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (4) : 387 -391. DOI: 10.1007/s13320-020-0602-5
Regular

Study of Temporal Thermal Response of Microfiber Bragg Grating

Author information +
History +
PDF

Abstract

Fiber Bragg grating has been successfully fabricated in the silica microfiber by the use of femtosecond laser point-by-point inscription. Temporal thermal response of the fabricated silica microfiber Bragg grating has been measured by the use of the CO2 laser thermal excitation method, and the result shows that the time constant of the microfiber Bragg grating is reduced by an order of magnitude compared with the traditional single-mode fiber Bragg grating and the measured time constant is ~ 21ms.

Keywords

Fiber optics sensors / fiber optics and optical communications / fiber optics components

Cite this article

Download citation ▾
Changrui Liao, Tianhang Yang, Jinli Han. Study of Temporal Thermal Response of Microfiber Bragg Grating. Photonic Sensors, 2020, 11(4): 387-391 DOI:10.1007/s13320-020-0602-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263-1276.

[2]

Rao Y J. In-fibre bragg grating sensors. Measurement Science and Technology, 1997, 8(4): 355-375.

[3]

Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, Askins C G, . Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.

[4]

Dakin J P, Pratt D J, Bibby G W, Ross J N. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electronics Letters, 1985, 21(13): 569-570.

[5]

Li E, Wang X, Zhang C. Fiber-optic temperature sensor based on interference of selective higher-order modes. Applied Physics Letters, 2006, 89(9): 091119.

[6]

Dils R R. High-temperature optical fiber thermometer. Journal of Applied Physics, 1983, 54(3): 1198-1201.

[7]

Wang C, He J, Zhang J C, Liao C R, Wang Y, Jin W, . Bragg gratings inscribed in selectively inflated photonic crystal fibers. Optics Express, 2017, 25(23): 28442-28450.

[8]

Wang C, Zhang J C, Zhang C Z, He J, Lin Y C, Jin W, . Bragg gratings in suspended-core photonic microcells for high-temperature applications. Journal of Lightwave Technology, 2018, 36(14): 2920-2924.

[9]

Liao C, Wang D, Li Y, Sun T, Grattan K T V. Temporal thermal response of type II-IR fiber Bragg gratings. Applied Optics, 2009, 48(16): 3001-3007.

[10]

Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotapers. Optics Express, 2004, 12(10): 2258-2263.

[11]

Tong L M, Gattass R R, Ashcom J B, He S, Lou J, Shen M, . Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816-819.

[12]

Liao C, Wang Q, Xu L, Liu S, He J, Zhao J, . D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser. Applied Optics, 2016, 55(7): 1525-1529.

[13]

Lin C, Liao C, Wang J, He J, Ying W, Li Z Y, . Fiber surface Bragg grating waveguide for refractive index measurements. Optics Letters, 2017, 42(9): 1684-1687.

[14]

Fang X, Liao C, Wang D. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Optics Letters, 2010, 35(7): 1007-1009.

[15]

Geernaert T, Kalli K, Koutsides C, Komodromos M, Nasilowski T, Urbanczyk W, . Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser. Optics Letters, 2010, 35(10): 1647-1649.

[16]

Zhang Y, Lin B, Tjin S C, Zhang H, Wang G, Shum P, . Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Optics Express, 2010, 18(25): 26345-26350.

[17]

Ran Y, Tan Y, Sun L, Gao S, Li J, Jin L, . 193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Optics Express, 2011, 19(19): 18577-18583.

[18]

Grellier A J C, Zayer N K, Pannell C N. Heat transfer modelling in CO2 laser processing of optical fibres. Optics Communications, 1998, 152(4–6): 324-328.

[19]

Sumetsky M, Dulashko Y, Fini J M, Hale A, Digiovanni D J. The microfiber loop resonator: theory, experiment, and application. Journal of Lightwave Technology, 2006, 24(1): 242-250.

[20]

Lewis R W, Nithiarasu P, Seetharamu K N. Fundamentals of the finite element methods for heat and fluid flow, 2004, England: John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/