Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor

Nikolay Lvovich Kazanskiy , Svetlana Nikolaevna Khonina , Muhammad Ali Butt

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (3) : 279 -290.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (3) : 279 -290. DOI: 10.1007/s13320-020-0601-6
Regular

Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor

Author information +
History +
PDF

Abstract

We propose a polarization-insensitive design of a hybrid plasmonic waveguide (HPWG) optimized at the 3.392 µm wavelength which corresponds to the absorption line of methane gas. The waveguide design is capable of providing high mode sensitivity (S mode) and evanescent field ratio (EFR) for both transverse electric (TE) and transverse magnetic (TM) hybrid modes. The modal analysis of the waveguide is performed via 2-dimension (2D) and 3-dimension (3D) finite element methods (FEMs). At optimized waveguide parameters, S mode and EFR of 0.94 and 0.704, can be obtained for the TE hybrid mode, respectively, whereas the TM hybrid mode can offer S mode and EFR of 0.86 and 0.67, respectively. The TE and TM hybrid modes power dissipation of ~3 dB can be obtained for a 20-µm-long hybrid plasmonic waveguide at the 60% gas concentration. We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications.

Keywords

Hybrid plasmonic waveguide / finite element method / methane gas / evanescent field absorption gas sensor / polarization-insensitive

Cite this article

Download citation ▾
Nikolay Lvovich Kazanskiy, Svetlana Nikolaevna Khonina, Muhammad Ali Butt. Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor. Photonic Sensors, 2020, 11(3): 279-290 DOI:10.1007/s13320-020-0601-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chou Chau Y F, Chou Chao C T, Huang H J, Rahimi Kooh M R, Kumara N T R N, Lim C M, . Perfect dual-band absorber based on plasmonic effect with the cross-hair/nanorod combination. Nanomaterials, 2020, 10(3): 493-1-493-15.

[2]

Butt M A, Kazanskiy N L, Khonina S N. Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sensors, 2020, 10(3): 223-232.

[3]

Chou Chau Y F, Chou Chao C T, Lim C M, Huang H J, Chiang H P. Deploying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime. ACS Omega, 2018, 3(7): 7508-7518.

[4]

Chou Chau Y F, Chou Chao C T, Chiang H P, Lim C M, Voo N Y, Mahadi A H. Plasmonic effects in composite metal nanostructures for sensing applications. Journal of Nanoparticle Research, 2018, 20(7): 190-1-190-13.

[5]

Qazi H H, Mohammad A B, Akram M. Recent progress in optical chemical sensors. Sensors, 2012, 12(12): 16522-16556.

[6]

Gruber P, Marques M P C, Szita N, Mayr T. Integration and application of optical chemical sensors in microbioreactors. Lab on a Chip, 2017, 17(16): 2693-2712.

[7]

Majdinasab M, Mitsubayashi K, Marty J L. Optical and electrochemical sensors and biosensors for the detection of quinolones. Trends in Biotechnology, 2019, 37(8): 898-915.

[8]

Hodgkinson J, Tatam R P. Optical gas sensing: a review. Measurement Science and Technology, 2013, 24(1): 012004-1-012004-59.

[9]

Jo J Y, Kwon Y S, Lee J W, Park J S, Rho B H, Choi W II. Acute respiratory distress due to methane inhalation. Tuberculosis and Respiratory Diseases, 2013, 74(3): 120-123.

[10]

Speight J G. Chapter 2: origin and production in natural gas: a basic handbook, 2018, Oxford: Gulf Professional Publishing, 25-57.

[11]

Butt M A, Khonina S N, Kazanskiy N L. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. Journal of Modern Optics, 2018, 65(2): 174-178.

[12]

Butt M A, Khonina S N, Kazanskiy N L. Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 µm wavelength for evanescent field gas absorption sensor. Optik, 2018, 168, 692-697.

[13]

Butt M A, Degtyarev S A, Khonina S N, Kazanskiy N L. An evanescent field absorption gas sensor at mid-IR 3.39 µm wavelength. Journal of Modern Optics, 2017, 64(18): 1892-1897.

[14]

Novack A, Streshinsky M, Ding R, Liu Y, Lim A E J, Lo G Q, . Progress in silicon platforms for integrated optics. Nanophotonics, 2014, 3(4–5): 205-214.

[15]

Butt M A, Khonina S N, Kazanskiy N L. Optical elements based on silicon photonics. Computer Optics, 2019, 43(6): 1079-1083.

[16]

Bachim B L, Gaylord T K. Polarization-dependent loss and birefringence in long-period fiber gratings. Applied Optics, 2003, 42(34): 6816-6823.

[17]

Kumar M. Polarization insensitive hollow optical waveguide. Optics Communications, 2012, 285(9): 2360-2362.

[18]

Baba T, Kokubun Y. New polarization-insensitive antiresonant reflecting optical waveguide. IEEE Photonics Technology Letters, 1989, 1(8): 232-234.

[19]

Han Q, St-Yves J, Chen Y, Menard M, Shi W. Polarization-insensitive silicon nitride arrayed waveguide grating. Optics Letters, 2019, 44(16): 3976-3979.

[20]

Kazanskiy N L, Khonina S N, Butt M A. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113798-1-113798-10.

[21]

Butt M A, Khonina S N, Kazanskiy N L. A multichannel metallic dual nano-wall square split-ring resonator: design analysis and applications. Laser Physics Letters, 2019, 16(12): 126201-1-126201-7.

[22]

Kumara N T R N, Chou Chau Y F, Huang J W, Huang H J, Lin C T, Chiang H P. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. Journal of Optics, 2016, 18(11): 115003-1-115003-7.

[23]

Chou Chau Y F, Chen K H, Chiang H P, Lim C M, Huang H J, Lai C H, . Fabrication and characterization of a metallic-dielectric nanorod array by nanosphere lithography for plasmonic sensing application. Nanomaterials, 2019, 9(12): 1691-1-1691-15.

[24]

Fang Y, Sun M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science and Applications, 2015, 4(6): e294-1-e294-11.

[25]

Butt M A, Khonina S N, Kazanskiy N L. Ultra-short lossless plasmonic power splitter design based on metal-insulator-metal waveguide. Laser Physics, 2019, 30(1): 016201-1-016201-6.

[26]

Chou Chau Y F, Chou Chao C T, Huang H J, Anwar U, Lim C M, Voo N Y, . Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results in Physics, 2019, 15, 102567-1-102567-6.

[27]

Butt M A, Khonina S N, Kazanskiy N L. A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square µ-ring cavities. Laser Physics, 2020, 30(1): 016205-1-016205-5.

[28]

Chandler-Horowitz D. High-accuracy, midinfrared (450 cm−1ω≤4000 cm−1) refractive index values of silicon. Journal of Applied Physics, 2005, 97(12): 123526-1-123526-8.

[29]

Malitson I H. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 1965, 55(10): 1205-1209.

[30]

Olmon R L, Slovick B, Johnson T W, Shelton D, Oh S H, Boreman G D, . Optical dielectric function of gold. Physical Review B, 2012, 86(23): 235147-1-235147-9.

[31]

Odeh M, Twayana K, Sloyan K, Villegas J E, Chandran S, Dahlem M S. Mode sensitivity analysis of subwavelength grating slot waveguides. IEEE Photonics Journal, 2019, 11(5): 2700210-1-12700210-10.

[32]

Swinehart D F. The beer-lambert law. Journal of Chemical Education, 1962, 39(7): 333-335.

[33]

Babin S M, Sova R M. Preliminary development of a fiber optic sensor for measuring bilirubin. Analytical Chemistry Insights, 2014, 9, 59-65.

[34]

Khonina S N, Kazanskiy N L, Butt M A. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sensors Journal, 2020, 20(15): 8469-8476.

[35]

Qiao Y, Tao J, Chen C H, Qiu J, Tian Y, Hong X, . A minature on-chip methane sensor based on an ultra-low loss waveguide and a micro-ring resonator filter. Micromachines, 2017, 8(15): 160-1-160-9.

[36]

Ranacher C, Consani C, Vollert N, Tortschanoff A, Bergmeister M, Grille T, . Characterization of evanescent field gas sensor structures based on silicon photonics. IEEE Photonics Journal, 2018, 10(5): 2700614-1-2700614-14.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/