Mach-Zehnder Interferometer for High Temperature (1000 °C) Sensing Based on a Few-Mode Fiber

Juan Liu , Chaowei Luo , Hua Yang , Zhen Yi , Bin Liu , Xingdao He , Qiang Wu

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (3) : 341 -349.

PDF
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (3) : 341 -349. DOI: 10.1007/s13320-020-0596-z
Article

Mach-Zehnder Interferometer for High Temperature (1000 °C) Sensing Based on a Few-Mode Fiber

Author information +
History +
PDF

Abstract

A Mach-Zehnder interferometer (MZI) for high temperature (1000 °C) sensing based on few mode fiber (FMF) was proposed and experimentally demonstrated. The sensor was fabricated by fusing a section of FMF between two single-mode fibers (SMFs). The structure was proven to be an excellent high temperature sensor with good stability, repeatability, and high temperature sensitivity (48.2 pm/C) after annealing process at a high temperature lasting some hours, and a wide working temperature range (from room temperature to 1000 C). In addition, the simple fabrication process and the low cost offered a great potential for sensing in high temperature environments.

Keywords

Mach-Zehnder interferometer / annealing process / few mode fiber / high temperature sensing

Cite this article

Download citation ▾
Juan Liu, Chaowei Luo, Hua Yang, Zhen Yi, Bin Liu, Xingdao He, Qiang Wu. Mach-Zehnder Interferometer for High Temperature (1000 °C) Sensing Based on a Few-Mode Fiber. Photonic Sensors, 2020, 11(3): 341-349 DOI:10.1007/s13320-020-0596-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu F T S, Ruffin P B, Yin S. Fiber optic sensors, 2008, New York: CRC Press

[2]

Liu D, Mallik A K, Yuan J, Yu C, Farrell G, Semenova Y, . High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure. Optics Letters, 2015, 40(17): 4 166-4 169.

[3]

Yu W, Lang T, Bian J, Kong W. Label-free fiber optic biosensor based on thin-core modal interferometer. Sensors and Actuators B: Chemical, 2016, 228(2): 322-329.

[4]

Brambilla G. High-temperature fibre Bragg grating thermometer. Electronics Letters, 2002, 38(17): 954-956.

[5]

Baker S R, Rourke H N, Baker V, Goodchild D. Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber. Journal of Lightwave Technology, 1997, 15(8): 1470-1477.

[6]

Li-Yang S, Wang T, Canning J, Cook K, Hwa-Yaw T. Bulk regeneration of optical fiber Bragg gratings. Applied Optics, 2012, 51(30): 7 165-7 169.

[7]

Antonio-Lopez J E, Eznaveh Z S, LiKamWa P, Schülzgen A, Amezcua-Correa R. Multicore fiber sensor for high-temperature applications up to 1000 °C. Optics Letters, 2014, 39(15): 4 309-4 312.

[8]

Zhu J, Zhang A, Xia T H, He S, Xue W. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer. IEEE Sensors Journal, 2010, 10(9): 1 415-1 418.

[9]

Liu Y, Qu S, Li Y. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Optics Letters, 2013, 38(3): 335-337.

[10]

Zhang Y, Yuan L, Lan X, Kaur A, Huang J, Xiao H. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser. Optics Letters, 2013, 38(22): 4 609-4 612.

[11]

Rugeland P, Margulis W. Revisiting twin-core fiber sensors for high-temperature measurements. Applied Optics, 2012, 51(25): 6 227-6 232.

[12]

Coviello G, Finazzi V, Villatoro J, Pruneri V. Thermally stabilized PCF-based sensor for temperature measurements up to 1000 °. Optics Express, 2009, 17(24): 21 551-21 559.

[13]

Wu C, Fu H Y, Qureshi K K, Guan B O, Tam H Y. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Optics Letters, 2011, 36(3): 412-414.

[14]

M. Janik, M. Koba, P. Mikulic, W. J. Bock, and M. Smietana, “Combined long-period grating and micro-cavity in-line Mach-Zehnder interferometer for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), Korea, April 24–28, 2017, pp. 1–4.

[15]

Liu Y, Wei L. Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Applied Optics, 2007, 46(13): 2 516-2 519.

[16]

Liu D, Wu Q, Mei C, Yuan J, Xin X, Mallik A K, . Hollow core fiber based interferometer for high-temperature (1000°C) measurement. Journal of Lightwave Technology, 2017, 36(9): 1 583-1 590.

[17]

Zhan X, Liu Y P, Tang M, Ma L, Wang R X, Duan L, . Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination. Optics Express, 2018, 26(12): 15 332-15 342.

[18]

Lu C X, Su J, Dong X P, Lu L H, Sun T, Grattan K T V. Studies on temperature and strain sensitivities of a few-mode critical wavelength fiber optic sensor. Journal of Lightwave Technology, 2018, 19(5): 1 794-1 801.

[19]

Huang T, Shao X, Wu Z, Sun Y, Zhang J, Lam H Q, . A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber. Optics Communications, 2014, 324, 53-57.

[20]

Nguyen L V, Hwang D, Moon S, Moon D S, Chung Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Optics Express, 2008, 16(15): 11 369-11 375.

[21]

Dong B, Zhou D, Wei L, Liu W, Li J. Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer. Optics Express, 2008, 16(23): 19 291-19 296.

[22]

Grobnic D, Smelser C W, Mihailov S J, Walker R B. Long-term thermal stability tests at 1000°C of silica fibre Bragg grating made with ultrafast laser radiation. Measurement Science and Technology, 2006, 17(5): 1 009-1 013.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/