Single-Mode Modified Tapered Fiber Structure Functionalized With GO-PVA Composite Layer for Relative Humidity Sensing
Aneez Syuhada , Muhammad Salleh Shamsudin , Suzairi Daud , Ganesan Krishnan , Sulaiman Wadi Harun , Muhammad Safwan Abd. Aziz
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (3) : 314 -324.
Single-Mode Modified Tapered Fiber Structure Functionalized With GO-PVA Composite Layer for Relative Humidity Sensing
A sensitive tapered optical fiber sensor incorporating graphene oxide (GO) and polyvinyl alcohol (PVA) composite film for the rapid measurement of changes in relative humidity was proposed and experimentally demonstrated. The sensing principle was based on the intensity modulation of the transmitted light induced by the refractive index changes of the sensitive coatings. The sensing region was obtained by tapering a section of single-mode optical fiber (SMF) from its original 125 µm diameter down to 9.03 µm. The tapered structure was then modified through deposition of GO/PVA nanocomposites by using the dip-coating technique. The field emission scanning electron microscope (FESEM) and Raman spectroscopy were used to characterize the structure of the composite film. As evidenced by a Fourier transform infrared spectroscopy (FTIR) analysis, the presence of oxygen functional groups (such as −OH and COOH) on the GO structure enabled the attachment of PVA molecules through hydrogen bonding and strong adhesion between GO/PVA layers. The performance of the sensor was tested over a wide range (20%RH to 99.9%RH) of relative humidity. The sensor showed a good response with its signal increasing linearly with the surrounding humidity. The tapered optical fiber sensor with the coating of GO/0.3g PVA achieved the highest sensitivity [0.5290RH (%)]. The stability, repeatability, reversibility, as well as response time of the designated sensor were also measured and analyzed.
Humidity sensor / tapered optical fiber / Graphene Oxide / PVA
| [1] |
|
| [2] |
T. Liu, Y. Wei, G. Song, Y. Li, J. Wang, Y. Ning, et al., “Advances of optical fiber sensors for coal mine safety monitoring applications,” in International Conference on Microwave and Photonics (ICMAP), India, Dec. 13–15, 2013, pp. 1–5. |
| [3] |
|
| [4] |
K. K. K. Annamdas and V. G. M. Annamdas, “Review on developments in fiber optical sensors and applications,” in SPIE Defense, Security, and Sensing, USA, April 23, 2010, pp. 76770R-1–76770R-12. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
B. Deshkulkarni, L. R. Viannie, S. V. Ganachari, N. R. Banapurmath, and A. Shettar, “Humidity sensing using polyaniline/polyvinyl alcohol nanocomposite blend,” in International Conference on Advances in Manufacturing, Materials and Energy Engineering (ICon MMEE 2018), India, March 2–3, 2018, pp. 1–8. |
| [9] |
P. Wang, K. Ni, B. Wang, Q. Ma, and W. Tian, “A chitosan-coated humidity sensor based on Michelson interferometer with thin-core optical fiber,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN), China, Aug. 7–10, 2017, pp. 1–3. |
| [10] |
J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensor based on a tapered fiber asymmetrically coated with indium tin oxide,” in Sensors, 2014 IEEE, Spain, Nov. 2–5, 2014, pp. 1916–1919. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
/
| 〈 |
|
〉 |